Copy 6 RM E54F22 VACA RM E54F IIII CLASSIFIEU CLASSIFICATION CHANGED # RESEARCH MEMORANDUM PERFORMANCE OF YJ73-GE-3 TURBOJET ENGINE IN ALTITUDE TEST CHAMBER By Harold R. Kaufman and Wilbur F. Dobson Lewis Flight Propulsion Laboratory Cleveland, Ohio Frank and the property of #### CLASSIFIED DOCUMENT This material contains information affecting the Mational Defense of the United States within the meaning of the explorage laws, Tills 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unanthorized person is problithed by law. # *NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON January 19, 1955 # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM #### PERFORMANCE OF YJ73-GE-3 TURBOJET ENGINE #### IN ALTITUDE TEST CHAMBER By Harold R. Kaufman and Wilbur F. Dobson #### SUMMARY The steady-state performance characteristics of the YJ73-GE-3 turbojet engine were determined in a Lewis altitude test chamber for a range of exhaust-nozzle areas at simulated altitudes from near sea level to 55,000 feet and flight Mach numbers from 0 to 1.2. The corresponding range of Reynolds number indices was from 0.96 to 0.12. A method of performance calculation based on engine pumping characteristics is also presented. Engine performance calculated by this method is presented for a wide range of flight conditions. The use of an exhaust-nozzle area sized to give rated conditions at sea level would permit operation near the point of minimum specific fuel consumption for a wide range of flight conditions, but would cause excessive exhaust-gas temperatures at rated speed at high altitudes. At rated corrected speed with a choked exhaust nozzle (rated area), decreasing the Reynolds number index from 1.0 to 0.1 decreased the corrected air flow 5 percent and increased the corrected exhaust-gas temperature 120° R. #### INTRODUCTION The over-all performance of the YJ73-GE-3 turbojet engine was determined in an altitude chamber at the NACA Lewis laboratory and is presented herein along with the starting characteristics for two altitudes. Component performance for this engine is presented in reference 1. The YJ73-GE-3 differs from the YJ73-GE-1A turbojet engine reported in references 2 and 3 in that the first-stage turbine nozzle area is 10 percent less. The J73 engines are provided with variable-position inlet guide vanes, which are closed at low engine speeds to avoid surge during rapid accelerations. Although the inlet guide vanes of the YJ73-GE-3 are normally closed with steady-state operation below 6800 rpm and open at higher speeds, the engine control was modified during the investigation to allow them to be open or closed at any speed. Because standard operation at cruise, normal, and military conditions is with open inlet guide vanes, most of the data presented herein were obtained with the inlet guide vanes in the open position. A limited amount of data was obtained with the vanes in the closed position. Performance data were obtained over a range from about 70 to 100 percent of rated speed with several exhaust-nozzle areas at simulated altitudes from near sea level to 55,000 feet and flight Mach numbers from 0 to 1.2. The corresponding range of Reynolds number indices was from 0.96 to 0.12. One exhaust-nozzle area that gave approximately limiting exhaust-gas temperature at rated speed and sea-level static conditions was included. Additional data were obtained at 35,000 feet at a flight Mach number of 0.8 to show the effects of changes in inletair temperature on performance. Data are presented in the form of engine performance maps at several flight conditions and in the form of engine pumping characteristics. Engine performance calculated from pumping characteristics is presented graphically for flight conditions from sea level to an altitude of 60,000 feet and from 0 to 1200 knots true flight speed. All experimental data are presented in both graphical and tabular form. #### APPARATUS AND PROCEDURE #### Engine The engine, shown installed in the test chamber in figure 1, has an over-all length of 146.5 inches and diameter of 36.75 inches. It is equipped with 21 variable-position inlet guide vanes that rotate simultaneously through 30° from closed to open at 6800 rpm when speed is increasing and close at 6800 rpm when speed is decreasing. The open-position angle between the engine center line and a tangent to the vanes is 0° at the root and 13° at the tip. The 12-stage axial-flow compressor has a pressure ratio of 7, a constant tip diameter of $32\frac{1}{8}$ inches, a first-stage hub-tip radius ratio of 0.455, a twelfth-stage hub-tip ratio of 0.880, and a tip Mach number of 0.997. The combustor is cannular type, with ten tubular inner liners. 3166 • The first stage of the two-stage turbine has 40 stator vanes, while the second stage has 53. The rotor tip diameter of the first stage is $29\frac{1}{2}$ inches, and that of the second is $31\frac{1}{8}$ inches. The hub-tip radius ratios of the first and second stages are 0.73 and 0.64, respectively. The manufacturer's performance ratings at standard sea-level static conditions are as follows: | Rated quantity | Military | Normal | |---|----------|--------| | Speed, rpm | 7950 | 7615 | | Maximum specific fuel consumption, lb/(hr)(lb thrust) | 0.917 | 0.887 | | Minimum jet thrust, lb | 8920 | 7840 | | Air flow, lb/sec | 142 | | | Turbine-outlet temperature, OF | 1185 | 1085 | #### Installation Altitude test chamber. - A sketch of the altitude test chamber and some of its associated ducting is shown in figure 2. The test chamber is 14 feet in diameter and 20 feet long. The test bed on which the engine was mounted is connected by a linkage to a balance diaphragm for thrust measurement. A screen and honeycomb are installed in the chamber upstream of the test section to smooth and straighten the inletair flow. The front bulkhead, which incorporated a labyrinth seal around the front of the engine, prevented the flow of inlet air directly into the exhaust system and provided a means of maintaining a pressure difference across the engine. A bellmouth cowl was installed on the front bulkhead to obtain a uniform velocity profile at the inlet of the compressor. Air supplied to the inlet section of the altitude chamber can be either refrigerated or heated dry air, or atmospheric air. Exhaust gases from the jet nozzle pass through an exhaust section, a primary cooler, an exhaust header, and a secondary cooler before entering the exhauster system. The inlet and exhaust pressure controls were designed to operate throttle valves automatically to maintain constant ram pressure ratio and exhaust pressure. Instrumentation. - The locations of instrumentation stations throughout the engine together with schematic sketches of the instrumentation at the engine inlet and the exhaust-nozzle inlet are shown in figure 3. All pressures were measured with alkazene or mercury manometers and photographically recorded. Temperatures were measured with iron-constantan and chromel-alumel thermocouples and were recorded by self-balancing potentiometers. Engine speed was measured by a chronometric tachometer and fuel flow with a calibrated rotameter. #### Procedure During the investigation the refrigeration system was changed to permit lower inlet-air temperatures, and at the same time the engine was overhauled. Therefore, the investigation was separated into two phases with the inlet-air temperatures varying from about 440° to 520° R for the first phase (before engine overhaul) and from about 380° to 440° R for the second phase (after engine overhaul). Most of the engine performance data were obtained in the first phase and are presented in table I. The approximate flight conditions and corresponding Reynolds number indices obtained in this phase are shown in the following table: | Altitude,
ft | | lds nu
light
M | Mach n | | |-----------------|------|------------------------|--------|------| | | 0 | 0.4 | 0.8 | 1.2 | | 0 | 0.96 | | | | | 15,000 | | | 0.88 | | | 25,000 | | | .59 | | | 35,000 | | | .39 | 0.58 | | 45,000 | | | .24 | | | 55,000 | | 0.12 | .15 | | The inlet-air total temperature and pressure and the static pressure in the test section surrounding the exhaust nozzle were maintained at approximately the desired altitude values except at the sea-level static condition. The average inlet total pressure of the data obtained at the sea-level static condition actually corresponded to a pressure altitude of about 2000 feet. In addition, the static pressure in the region surrounding the exhaust nozzle was slightly higher than the inlet total pressure, causing a slight reverse ram. The sea-level static condition was difficult to simulate in the altitude facility. The disparities at the sea-level static condition were due to this difficulty and were not normal experimental error. Although these difficulties prevent the direct presentation of the sea-level static data in the form of a performance map, the usefulness of the data for pumping characteristics is not affected. Improvements in the refrigeration system permitted the use of colder inlet-air temperatures in the second phase of the program and thereby extended the range of the investigation to higher corrected engine speeds. The data obtained in the second phase are presented in table II. The approximate flight conditions and Reynolds number indices obtained in the second phase are shown in the following table: | Altitude,
ft | Reynolds nu
for flight M
M,
of | ach number, | |-----------------|---|-------------| | | 0.4 | 0.8 | | 35,000 | | 0.461 | | 45,000 | | .304 | | 55,000 | 0.140 | .176 | The lower inlet-air temperatures obtained in the second phase resulted in higher Reynolds number indices for similar flight conditions. The effects of differences in Reynolds number
indices and the performance changes accompanying the engine overhaul were reduced by graphical and analytical adjustments to the data obtained in the second phase. The magnitude of these adjustments was about 2 percent, which is of the same order as the variation that would be expected between production engines of any given model. Data were obtained with four exhaust-nozzle areas at each flight condition. The physical details of the nozzle configurations are given in figure 4. The fixed exhaust nozzle with an area of 2.388 square feet (fig. 4(a)) was designed to give approximately limiting exhaust-gas temperature at sea-level static conditions and is referred to as the rated nozzle. A clamshell variable-area exahust nozzle (fig. 4(b)) was used to obtain the two intermediate areas of 2.514 and 2.694 square feet. The largest exhaust-nozzle area, 3.688 square feet, was obtained with a straight tail pipe attached to the outlet of the diffuser (fig. 4(c)). In order to extend the range of the investigation closer to compressor surge, an additional smaller-than-rated exhaust-nozzle area was used at the 35,000-foot altitude and 0.8 Mach number flight condition. The inlet guide vanes were normally scheduled to begin opening or closing, depending on whether the engine was accelerating or decelerating, respectively, at 6800 rpm. The control was modified during the investigation to permit opening or closing the inlet guide vanes at any speed, thereby extending the speed range investigated with both inlet-guide-vane positions. The fuel used was MIL-F-5624A, grade JP-4, with a lower heating value of 18,700 Btu per pound and a hydrogen-carbon ratio of 0.171. The symbols and methods of experimental data reduction are given in appendixes A and B, respectively. #### RESULTS AND DISCUSSION #### Performance Maps Performance maps are useful for the compact presentation of a large amount of altitude performance information. The performance maps for seven flight conditions with altitudes from 15,000 to 55,000 feet and Mach numbers from 0.43 to 1.23 are shown in figure 5. Only data obtained with open inlet guide vanes are shown. These data have been adjusted by the factors δ_a and θ_a to compensate for deviations from standard altitude pressures and temperatures. The deviations from altitude conditions were small except for some high-corrected-speed data taken at low inlet-air temperatures. The exhaust-nozzle areas given on the performance maps are cold projected areas. As the discharge coefficients of exhaust nozzles vary with temperature, pressure ratio, and configuration, the effective flow areas will differ from the values shown on the performance maps. Curves to convert cold projected areas into effective areas can be found in a subsequent section. At thrust levels below maximum, different values of specific fuel consumption may be obtained by varying the exhaust-nozzle area and engine speed simultaneously. In order to determine the best exhaust-nozzle-area schedule within the range investigated, the exhaust-nozzle 7 areas corresponding to minimum specific fuel consumption for several thrust levels at each flight condition were obtained from figure 5 and plotted as a function of thrust in figure 6. For the high thrust levels (cruise and military) that would be employed over most of a normal flight plan, the exhaust-nozzle area for minimum specific fuel consumption varied from about 2.4 to 2.5 square feet. However, use of rated exhaust-nozzle area (2.388 sq ft) gave specific fuel consumptions within 2 percent of the minimum values. #### Pumping Characteristics and Performance Prediction Treatment of a turbojet engine as a pump (ref. 4) and presentation of its characteristics in terms of air flow, pressure ratio, and temperature ratio represent one of the most useful forms for performance calculation. One advantage of the use of pumping characteristics is that the engine performance can be determined apart from the effects of inlet and outlet ducting, so that the calculation of the effects of different ducting combinations on over-all engine performance is possible. The pumping characteristics, combustion efficiency, and exhaust ducting losses of the YJ73-GE-3 turbojet engine are presented in this section to aid performance calculation at any flight condition within the range of Reynolds number indices covered by the investigation. Sample problems illustrating the use of the curves presented in this section are given in appendix C. Pumping characteristics with a range of exhaust-nozzle areas. To simplify the presentation, data for one reference Reynolds number index were used to show the relation of corrected engine speed, engine temperature ratio, and engine pressure ratio. Curves are then given to provide correction to other Reynolds number indices. In order to obtain maximum ranges of corrected engine speed and engine temperature ratio, the 35,000-foot altitude and 0.8 Mach number flight condition was used as the reference. The Reynolds number index of this flight condition is 0.39. The pumping characteristics at a Reynolds number index of 0.39 are shown in figure 7. The air-flow and pressure-ratio correction curves are shown in figure 8. The correction curve of air flow was found to be independent of temperature ratio and corrected speed, while the pressure-ratio correction curves were independent only of temperature ratio. To find the engine pressure ratio and corrected air flow at a given engine and flight condition, the following steps are used: (1) From the desired inlet temperature, exhaust-gas temperature, and engine speed, find the engine temperature ratio and corrected engine speed. - (2) By using the engine temperature ratio, the corrected engine speed, and figure 7, find the engine pressure ratio and corrected air flow that would be obtained at a Reynolds number index of 0.39. - (3) Calculate the Reynolds number index from the total temperature and total pressure of the desired flight condition. - (4) From the corrected engine speed, the Reynolds number index, and figure 8, find the correction factors for engine pressure ratio and corrected air flow. - (5) Multiply the pressure ratio and corrected air flow obtained from step (2) by the correction factors from step (4). The engine pressure ratio and corrected air flow obtained by the preceding method agree with faired experimental values within about 1 percent, except for the pressure ratios corresponding to the lowest temperature ratios at each speed, where slightly larger variations were found. Pumping characteristics with fixed exhaust-nozzle area. - The pumping characteristics presented in figures 7 and 8 are suitable for engine performance calculations when a variable-area exhaust nozzle is trimmed to give a desired exhaust-gas temperature. However, use of figures 7 and 8 for an engine with a fixed-area exhaust nozzle would require trial-and-error solutions. In order to obtain direct solutions at approximately rated exhaust-nozzle area (2.388 sq ft), figure 9 was constructed. Figure 9 is limited in application to exhaust-nozzle pressure ratios greater than 2.5. For pressure ratios below about 2.5, the exhaust-nozzle discharge coefficient (fig. 10(a)) varies so that the use of the pumping characteristics of figures 7 and 8 and trial-and-error solutions would be required. Reynolds number effects can be determined from figure 9. For a corrected speed of 7950 rpm, the corrected air flow decreased from 142 to 134.5 pounds per second and the temperature ratio increased from 3.1 to 3.4 when the Reynolds number index decreased from 1.0 to 0.1. The corrected-air-flow and temperature-ratio changes correspond to a 5-percent decrease and a 120° R (corrected temperature) increase, respectively. Discharge coefficient. - For conditions in which the exhaust nozzle is unchoked or if discharge coefficient varies with pressure ratio, the variation of effective exhaust-nozzle area with exhaust-nozzle pressure ratio must be known to obtain a solution with figures 7 and 8. The discharge coefficients of the four exhaust nozzles used in this investigation were plotted against pressure ratio in figure 10 to permit calculation of effective area from cold projected area. ٩ Combustion efficiency. - For the calculation of fuel flow, combustion efficiency must be known. Combustion efficiency is plotted in figure 11. The derivation of the correlating parameter, the product of air flow and exhaust-gas temperature, can be found in reference 5. Use of this curve with air flow and engine-inlet and exhaust-gas temperatures enables calculation of fuel flow and, hence, specific fuel consumption. Exhaust ducting losses. - As was mentioned previously, the tail-pipe and exhaust-nozzle losses are not included in the engine pressure ratio. In order to permit calculation of thrust, the tail-pipe total-pressure loss and exhaust-nozzle effective velocity coefficient are presented in figures 12 and 13, respectively. The sharp rise of the tail-pipe total-pressure loss ratio at high values of turbine-outlet gas-flow parameter resulted from choking at the turbine outlet. #### Thrust Correlation Correlations of jet thrust with an exhaust-nozzle pressure-drop parameter are presented in references 6 and 7. Jet thrust correlations, when used in conjunction with pumping characteristics, may be used for thrust prediction. Correlations of jet thrust with exhaust-nozzle pressure drop obtained in this investigation are presented in figures 14 and 15. In figure 14 the thrusts for all four nozzle areas have been divided by effective area (discharge coefficient times projected area) to generalize thrusts to a single curve. Figure 15 is for the nozzle area that gives approximately rated temperature at sea-level static conditions. These correlations are limited in application to choked flow in the exhaust nozzle, which was assumed in the derivation of the correlating parameter. #### Effect of Inlet
Temperature on Performance In order to determine the applicability of data at other inlet temperatures than were used during the investigation, data were obtained with inlet-air temperatures from 482° to 621° R at an altitude of 35,000 feet and a flight Mach number of 0.8. A fixed exhaust nozzle with an area of 2.37 square feet was used. The variations of corrected air flow, corrected net thrust, and corrected fuel flow with corrected engine speed for three inlet temperatures are shown in figures 16(a), (b), and (c), respectively. At a constant corrected speed, corrected air flow decreases slightly with increasing inlet temperature, while both corrected net thrust and corrected fuel flow increase with increasing inlet temperature. The variation of engine temperature ratio with engine pressure ratio for the three inlet temperatures is shown in figure 16(d). At constant corrected speed, the temperature ratio increased with inlet temperature. The pressure ratio also increased slightly with increasing inlet temperature. The variation of the engine performance parameters with inlet temperature was due at least in part to changes in Reynolds number index associated with changes in inlet temperature. The range of Reynolds number index corresponding to the inlet-temperature variation was from 0.40 to 0.29. The change of performance variables for a Reynolds number index change from 0.40 to 0.29 was calculated from the pumping characteristics of figure 9 for a corrected speed of 7000 rpm. The results of these calculations and the corresponding information for variable-inlet-temperature data from figure 16 are shown in the following table: | | Corrected fuel flow | 1 | - | Pressure
ratio | Corrected net
thrust | |---|---------------------|------|-----|-------------------|-------------------------| | Change due to Reynolds number effect, percent | 2.6 | -0.7 | 1.4 | 0 | 1.1 | | Total observed change, percent | 9.6 | -1.1 | 2.8 | 0.6 | 2.5 | Comparison of the values indicates that much of the change of performance variables with inlet temperature can be charged to Reynolds number effects. Considering the accuracy of the data, correcting for inlet-temperature effects should not be necessary for corrected air flow, temperature ratio, pressure ratio, or corrected thrust over the range of temperatures investigated. In the case of corrected fuel flow, however, a significant difference of 7.0 percent exists between the total change of 9.6 percent and the change of 2.6 percent predicted for Reynolds number effects alone. The specific heat of the products of combustion of fuel and air increases with fuel-air ratio and temperature. Calculation showed that the increase in specific heat accounted for 5 of the 7-percent difference in corrected fuel flows. To predict fuel flows over wide ranges of inlet temperature, fuel flows should, therefore, be calculated from air flows, inlet and outlet temperatures, and combustion efficiencies, instead of from generalized fuel-flow plots. The recommended method of fuel-flow calculation was used for the predicted performance in the next section. 7 ### Calculated Performance from Pumping Characteristics Predicted performance is included to facilitate estimations of airplane performance. Performance of the YJ73-GE-3 turbojet engine with a 2.388-square-foot exhaust-nozzle area was calculated from the pumping characteristics for a wide range of flight conditions and is plotted in figure 17. A standard NACA atmosphere and complete ram recovery were assumed. The accuracy of the calculated thrusts and fuel flows in figure 17 is within about 2 percent. Because the discrepancies discussed previously in setting up the approximate sea-level static flight condition do not affect the data of figure 17(a), these data provide an accurate indication of actual sea-level capabilities of the YJ73-GE-3 turbojet engine with a fixed exhaust-nozzle area of 2.388 square feet. The thrust, air flow, and specific fuel consumption at rated speed and sea-level static flight conditions were 8800 pounds, 142 pounds per second, and 0.92 pound per hour per pound of thrust, respectively. As mentioned before, errors in measuring temperatures and setting up the sea-level static flight condition resulted in the use of an exhaust-nozzle area (2.388 sq ft) that caused exhaust-gas temperatures to be about 25°R below the limiting value. The thrusts and fuel flows would have been slightly higher if the exhaust-nozzle area had been sized to give limiting exhaust-gas temperature. At rated speed and sea-level static conditions, the thrust and specific fuel consumption would have been about 8960 pounds and 0.93 pound per hour per pound of thrust, respectively. Additional factors must be considered to determine the performance in an actual installation. The exhaust nozzle may be larger than that used here to give maximum performance with high ambient temperature. Another reason for increasing the exhaust-nozzle area could be the possible requirement that rated speed and exhaust-gas temperature be obtained simultaneously at static conditions with distorted and throttled inlet flow. Of course, inlet losses are present at all flight conditions and their effects should always be considered. #### Altitude-Ignition Characteristics The effect of fuel flow on altitude ignition was determined at altitudes of 35,000 and 45,000 feet with MIL-F-5624A, grade JP-4, fuel over a range of windmilling engine speeds (fig. 18). In order to determine whether ignition could be obtained for a given combination of fuel flow and windmilling engine speed, speed and fuel flow were maintained constant during the ignition period. Fuel temperature was about 60°F, and engine-inlet air temperature varied from 5° to -50°F at 35,000 feet but remained about constant at -35°F at 45,000 feet. Results show that the minimum fuel flow required to obtain ignition increased with windmilling engine speed. To obtain ignition at windmilling speeds below 2500 rpm, a higher fuel flow was required at 45,000 that at 35,000 feet. #### CONCLUDING REMARKS The performance of the YJ73-GE-3 turbojet engine was determined over a wide range of flight conditions in an altitude test chamber. With an exhaust-nozzle area of 2.388 square feet, the performance at sea-level static conditions was: maximum thrust, 8800 pounds; air flow at rated speed, 142 pounds per second; specific fuel consumption at rated speed, 0.92 pound per hour per pound of thrust. The use of an exhaust-nozzle area sized to give rated conditions at sea level would permit operation near the point of minimum specific fuel consumption for a wide range of flight conditions but would cause excessive exhaust-gas temperatures at rated speed at high altitudes. At rated corrected speed and a choked exhaust nozzle (rated area), decreasing the Reynolds number index from 1.0 to 0.1 decreased the corrected air flow 5 percent and increased the corrected exhaust-gas temperature 120° R. In order to predict fuel flows over wide ranges of inlet temperature, fuel flows should be calculated from air flows, inlet and outlet temperatures, and combustion efficiences, instead of from generalized fuel-flow plots. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, June 23, 1954 #### APPENDIX A #### SYMBOLS The following symbols are used in this report: - A area, sq ft - B thrust scale reading, 1b - CD discharge coefficient, ratio of effective flow area to cold projected exhaust-nozzle area - C_v effective-velocity coefficient, ratio of scale jet thrust to nozzle-inlet rake jet thrust - D external drag of installation, lb - F; jet thrust, 1b - Fn net thrust, 1b - g dimensional constant, 32.2 ft/sec² - M Mach number - N engine speed, rpm - P total pressure, lb/sq ft abs - p static pressure, lb/sq ft abs - R gas constant, 53.3 ft-lb/(lb)(OR) - T total temperature, OR - t static temperature, OR - V velocity, ft/sec or knots - Wa air flow, lb/sec - Wf fuel flow, lb/hr - Wg gas flow, lb/sec | Υ | ratio of specific heats for gases | | |------------------|---|------| | δa | ratio of ambient absolute static pressure to absolute static pressure of NACA standard atmosphere at respective altitude | ٩ | | 8 _{T,1} | ratio of engine-inlet total pressure to absolute static pressure of NACA standard atmosphere at sea level | | | $\eta_{f b}$ | combustion efficiency | 3166 | | θ _a | ratio of absolute equivalent ambient static temperature to absolute static temperature of NACA standard atmosphere at respective altitude | | | ^θ Τ,1 | ratio of absolute engine-inlet total temperature to absolute static temperature of NACA standard atmosphere at sea level | | | φ | ratio of absolute viscosity of air at engine inlet to viscosity of NACA standard atmosphere at sea level | • | | Subscr | ipts: | | | a | air | | | е | equivalent | | | ef | effective | | | f | fuel | 9 mm | | g | gas | | | i | indicated | | | Ĵ | jet | | | N | exhaust nozzle | _ | | r | rake . | | | s | scale | | | 0 | free-stream conditions | | | 1 | engine inlet | • | NACA RM E54F22 | 2 COMPLERROL OUCTE | 3 | compressor | outle | |--------------------|---|------------|-------| |--------------------|---|------------|-------| - 4 combustor inlet - 5 turbine inlet - 6 turbine outlet - 7 exhaust-nozzle inlet #### APPENDIX B #### REDUCTION OF EXPERIMENTAL DATA Flight Mach number. - The equivalent flight Mach number, with complete ram pressure recovery assumed, was calculated from the expression $M_{O,e} = \sqrt{\frac{2}{\gamma - 1} \left[\frac{P_1}{P_0} \right]^{\frac{\gamma - 1}{\gamma}} - 1}$ Equivalent temperature. - Equivalent static temperature was determined from ambient static pressure and engine-inlet total pressure and temperature: $$t_{0,e} = \frac{T_1}{\frac{\gamma -
1}{\gamma}}$$ $$\left(\frac{P_1}{p_0}\right)$$ Airspeed. - The following equation was used to calculate airspeed: $$V_{0,e} = M_{0,e} \sqrt{\gamma gRt_{0,e}}$$ Temperature. - Total temperatures were determined from indicated temperatures with the following relation: $$T = \frac{T_{1}\left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}}}{1 + 0.85 \left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}} - 1}$$ where 0.85 was taken as the recovery factor for the thermocouples used. Air flow. - Air flow was determined from pressure and temperature measurements in the engine-inlet air duct and the following equation: $$W_{a} = A_{1}p_{1} \sqrt{\frac{2g\gamma}{RT_{1}(\gamma - 1)} \left(\frac{p_{1}}{p_{1}}\right)^{\frac{\gamma - 1}{\gamma}} \left[\left(\frac{p_{1}}{p_{1}}\right)^{\frac{\gamma - 1}{\gamma}} - 1\right]}$$ 3166 S. Y.S Gas flow. - The total weight flow through the engine was calculated as follows: $$W_g = W_{a,1} + \frac{W_f}{3600}$$ Exhaust-nozzle effective-velocity coefficient. - The velocity coefficient was calculated as the ratio of scale jet thrust to rake jet thrust. Scale jet thrust was obtained from the equation $$F_{j,s} = B + \frac{W_{a,1}V_1}{g} + A_1(p_1 - p_0) + D$$ Rake jet thrust was calculated from gas flow and an effective-velocity parameter: $$F_{j,r} = \frac{W_g}{g} V_{ef}$$ The effective velocity, which includes the effect of excess pressure not converted to velocity for supercritical pressure ratios, is given for an ideal convergent nozzle: $$V_{\text{ef}} = V_{N} + \frac{A_{N}(p_{N} - p_{O})}{V_{g}/g}$$ where V_N , A_N , and p_N are the velocity, the area, and the static pressure at the vena contracta. The term $V_{\rm ef}/\sqrt{g{\rm RT}_6}$ is called the effective-velocity parameter and is a function of exhaust-nozzle pressure ratio and the ratio of specific heats. #### APPENDIX C #### PERFORMANCE CALCULATION FROM PUMPING CHARACTERISTICS Three methods of performance prediction based on pumping characteristics are presented to permit calculation of engine performance for most engine operating conditions. Case A is for an engine with an exhaust nozzle of known area in which the exhaust-nozzle pressure ratio is high enough (well above critical) that the discharge coefficient is constant. Case B is for an engine in which the exhaust-gas temperature is known, but the exhaust-nozzle area is not (e.g., where a control trims a variable-area exhaust nozzle for a desired temperature). Case C is for an engine with an exhaust nozzle of known area when the exhaust-nozzle pressure ratio is low enough to change the discharge coefficient. #### Case A To demonstrate case A, a flight speed of 600 knots and an altitude of 15,000 feet are chosen as the flight condition. Rated engine speed and an exhaust-nozzle area of 2.388 square feet are assumed. The following quantities are known: $$p_O = 1193 \text{ lb/sq ft}$$ $$t_O = 465^{\circ} \text{ R}$$ $$V_O = 600 \text{ knots}$$ $$N = 7950 \text{ rpm}$$ From these quantities the following parameters may be calculated: $$V_0 = 1013 \text{ ft/sec}$$ $P_1 = 2149 \text{ lb/sq ft}$ $T_1 = 550^{\circ} \text{ R}$ $\delta_{T,1} = 1.016$ 3166 $$\sqrt{\theta_{\mathrm{T,1}}} = 1.030$$ $$\delta_{\mathrm{T,1}}/\phi\sqrt{\theta_{\mathrm{T,1}}} = 0.940$$ $$N\sqrt{\theta_{\mathrm{T,1}}} = 7718 \text{ rpm}$$ From figure 9, $$W_a \sqrt{\theta_{T,1}}/\delta_{T,1} = 138.4 \text{ lb/sec}$$ $$P_6/P_1 = 2.11$$ $$T_7/T_1 = 2.94$$ and $$W_a = 136.5 lb/sec$$ $$P_6 = 4534 \text{ lb/sq ft}$$ $$T_7 = 1617^{\circ} R$$ Fuel flow. - To calculate fuel flow and thereby obtain gas flow, the following steps are required: $$W_aT_7 = (136.5)(1617)$$ = 221×10³ From figure 11, $$\eta_{\rm b} = 0.975$$ The engine temperature rise is $$T_7 - T_1 = 1067^{\circ} R$$ From reference 8, $$(W_f/3600 W_a)_{ideal} = 0.0149$$ Dividing by efficiency to obtain actual fuel-air ratio, $$(W_f/3600 W_g)_{actual} = 0.0153$$ The fuel flow is $$W_f = 3600 (W_a)(W_f/3600W_a)_{actual}$$ = 7520 lb/hr The gas flow is $$W_g = W_a + (W_f/3600)$$ = 138.6 lb/sec Exhaust-nozzle-inlet pressure. - To calculate the exhaust-nozzle-inlet pressure P₇ the following steps are necessary: $$W_g \sqrt{T_7} / P_6 = 1.229$$ From figure 12, $$(P_6 - P_7)/P_6 = 0.0205$$ and $$P_7 = P_6 \left[1 - (P_6 - P_7)/P_6 \right]$$ = 4441 lb/sq ft Thrust. - To calculate thrust the following steps are necessary: $$P_7/P_0 = 3.723$$ Ratio of specific heats γ_7 for a fuel-air ratio of 0.0153 and a temperature of 1617° R is 1.334. From the exhaust-nozzle pressure ratio, the ratio of specific heats, and reference 9, the effective-velocity parameter $V_{\rm ef}/\sqrt{\rm gRT}$ can be found: $$V_{ef}/\sqrt{gRT} = 1.472$$ The effective velocity is $$V_{ef} = 1.472 \sqrt{gRT_7}$$ = 2455 ft/sec 316 The ideal or rake jet thrust is $$F_{j,r} = V_{ef}W_g/g$$ $$= 10,570 \text{ lb}$$ From figure 13, $$C_{xr} = 0.986$$ The actual or scale jet thrust is $$F_{j,s} = C_v F_{j,r}$$ = 10,420 lb Subtracting inlet momentum to get net thrust, $$F_n = F_{j,s} - (V_0W_a/g)$$ = 6126 lb Summary. - Summarizing the performance and rounding off numbers to give more realistic indications of accuracy, $$T_7 = 1620^{\circ} R$$ $W_a = 137 \text{ lb/sec}$ $W_f = 7500 \text{ lb/hr}$ $F_n = 6100 \text{ lb}$ #### Case B To demonstrate case B, a flight speed of 600 knots and an altitude of 15,000 feet are chosen as the flight condition (the same as case A). For the engine, rated speed and limiting exhaust-gas temperature are assumed. The following quantities are known: $$p_O = 1193 \text{ lb/sq ft}$$ $$t_O = 465^{O} \text{ R}$$ $$V_O = 600 \text{ knots}$$ N = 7950 rpm $$T_7 = 1645^{\circ} R$$ From these quantities the following parameters may be calculated: $$V_{O} = 1013 \text{ ft/sec}$$ $P_{I} = 2149 \text{ lb/sq ft}$ $T_{I} = 550^{\circ} \text{ R}$ $\delta_{T,1} = 1.016$ $\sqrt{\theta_{T,1}} = 1.030$ $\delta_{T,1}/\phi \sqrt{\theta_{T,1}} = 0.940$ $N/\sqrt{\theta_{T,1}} = 7718 \text{ rpm}$ $T_{7}/T_{I} = 2.991$ From figures 7 and 8, using the method outlined in the text, $$W_a \sqrt{\theta_{T,1}}/\delta_{T,1} = 138.7 \text{ lb/sec}$$ $P_6/P_1 = 2.172$ and $$W_8 = 136.8 \text{ lb/sec}$$ $P_6 = 4666 \text{ lb/sq ft}$ Fuel flow. - To calculate fuel flow and thereby obtain gas flow, the following steps are required: $$W_a T_7 = (136.8)(1645)$$ = 225×10^3 From figure 11, $$\eta_{\rm b} = 0.975$$ The engine temperature rise is $$T_7 - T_1 = 1095^{\circ} R$$ From reference 8. $$(W_f/3600W_a)_{ideal} = 0.0154$$ Dividing by efficiency to obtain actual fuel-air ratio, $$(W_f/3600W_a)_{actual} = 0.0158$$ The fuel flow is $$W_f = 3600 (W_a)(W_f/3600W_a)_{actual}$$ = 7780 lb/hr The gas flow is $$W_g = W_a + (W_f/3600)$$ = 139.0 lb/sec Exhaust-nozzle-inlet pressure. - To calculate the exhaust-nozzle-inlet pressure P₇ the following steps are necessary: $$W_g \sqrt{T_7} / P_6 = 1.208$$ From figure 12, $$(P_e - P_7)/P_6 = 0.0192$$ and $$P_7 = P_6 \left[1 - (P_6 - P_7)/P_6 \right]$$ = 4576 lb/sq ft Thrust. - To calculate thrust the following steps are necessary: $$P_7/P_0 = 3.836$$ and γ_7 for a fuel-air ratio of 0.0158 and a temperature of 1645°R is 1.332. From the exhaust-nozzle pressure ratio, the ratio of specific heats, and reference 9, the effective-velocity parameter $V_{\rm ef}/\sqrt{gRT}$ can be found: $$V_{ef}/\sqrt{gRT} = 1.484$$ The effective velocity is $$V_{ef} = 1.484 \sqrt{gRT_7}$$ = 2496 ft/sec The ideal or rake jet thrust is $$F_{j,r} = V_{ef}W_g/g$$ $$= 10,780 \text{ lb}$$ From figure 13, $$C_{v} = 0.987$$ The actual or scale jet thrust is $$F_{j,s} = C_v F_{j,r}$$ = 10,640 lb Subtracting inlet momentum to get net thrust, $$F_n = F_{j,s} - (V_0 W_a/g)$$ = 6335 lb Exhaust-nozzle area. - To find out whether the exhaust-gas temperature chosen is within the physical capabilities of the exhaust nozzle, calculation of the exhaust-nozzle area is necessary. From figure 10(a), $$C_{D} = 0.985$$ (The exhaust-nozzle area is expected to be smaller than 2.388 square feet, because a higher value of T_7 was used in case B than in case A. Therefore, fig. 10(a) is used.) Using the total-to-static pressure ratio at the exit of the exhaust nozzle, the ratio of specific heats, and reference 9, the exhaust-nozzle area can be found: Static-pressure parameter = 0.801 $$A_{N} = \frac{(W_{g})(\sqrt{T_{7}})(0.801)}{1.010(C_{D})(p_{N})(\sqrt{g/R})}$$ = 2.366 sq ft (The value 1.010 was an approximate correction for thermal expansion used for all experimental data.) Summarizing the performance and rounding off numbers to give more realistic indications of accuracy, $$W_a = 137 \text{ lb/sec}$$ $W_f = 7800 \text{ lb/hr}$ $F_n = 6300 \text{ lb}$ $A_N = 2.37 \text{ sq ft}$ #### Case C The similarity of the mathematical steps in cases B and C makes a numerical example of case C unnecessary. The differences between the two methods are: for case B the exhaust-gas temperature is known, while for case C it is unknown; for case B the exhaust-nozzle area is unimportant (except that it should fall within the geometrical limitations), while for case C the exhaust-nozzle area is known and is one of the factors affecting exhaust-gas temperature. The solution of case C is accomplished as follows: - (1) Assume an exhaust-gas temperature. - (2) Solve for exhaust-nozzle area (using the steps given in case B). - (3) Assume new values of exhaust-gas temperature and solve for exhaust-nozzle area until either the desired value of area is obtained or until sufficient points have been obtained to cross-plot for performance at the desired exhaust-nozzle area. #### REFERENCES - 1. McAulay, John E., and Campbell, Carl E.: Altitude Component Performance of the YJ73-GE-3 Turbojet Engine. NACA RM E54D09, 1954. - 2. Campbell, Carl E., and Conrad, E. William: Altitude Performance Characteristics of the J73-GE-lA Turbojet Engine. NACA RM E53I25, 1953. - 3. Campbell, Carl E., and Sobolewski, Adam E.: Altitude Chamber Investigation of J73-GE-lA Turbojet Engine Component Performance. NACA RM E53IO8, 1953. - 4. Sanders,
Newell D., and Behun, Michael: Generalization of Turbojet-Engine Performance in Terms of Pumping Characteristics. NACA TN 1927, 1949. - 5. McAulay, John E., and Kaufman, Harold R.: Altitude Wind Tunnel Investigation of the Prototype J40-WE-8 Turbojet Engine Without Afterburner. NACA RM E52KlO, 1953. - 6. Hesse, W. J.: A Simple Gross Thrust Meter Installation Suitable for Indicating Turbojet Engine Gross Thrust in Flight. Tech. Rep. No. 2-52, Test Pilot Training Div., Naval Air Test Center, Apr. 3, 1952. - 7. Sivo, Joseph N., and Fenn, David B.: A Method of Measuring Jet Thrust of Turbojet Engines in Flight Installations. NACA RM E53J15, 1954. - 8. Turner, L. Richard, and Bogart, Donald: Constant-Pressure Combustion Charts Including Effects of Diluent Addition. NACA Rep. 937, 1949. (Supersedes NACA TN's 1655 and 1086.) - 9. Turner, L. Richard, Addie, Albert N., and Zimmerman, Richard H.: Charts for the Analysis of One-Dimensional Steady Compressible Flow. NACA TN 1419, 1948. 3166 - - # TABLE I. - ENGINE PERFORMANCE DATA. # (a) Inlet guide vanes open. | Run | Approximate
altitude, | number | static | Mach | Equiv-
alent | Engine-
inlet | Engine-
inlet | Turbine-
inlet | Turbing-
outlet | | Tail-pi | pe total t | emperature, | Tail-
pipe | Eng | ine speed | , | |----------------------------|--------------------------|---|--|---|---|--|--|--|--|--|--|--|--|--|--|--|--| | | Tt. | index,
5,1
e Ver,1 | Po,
15
sq ft abs | mmeber,
Mo | ambient-
air
static
temper-
ature,
to,e,
or | total
temperature,
Tl,
on | total
pressure,
Pl,
1b
eq ft abs | total
temperature,
T5,
OR | total
temperature,
Tg,
OR | total pressure, Pg, 1b aq ft abs | Actual,
T ₇ | Adjusted, | Corrected,
Ty/8T,1 | pressure,
P7,
1b
sq ft abs | Actual, | Adjusted,
E/-√θa | Corrected,
N/√8 _{T,1} | | | | | | | | | ъ | chemat-nozzle | area, 2.588 | eq ft | | | | | | | | | 12545 | 0 | 0.922
.925
.926
.938
.959 | 2055
2043
2057
2059
2041 | 00000 | 522
592
522
520
518 | 514
514
515
515
516 | 1932
1942
1944
1970
2014 | 2030
1987
1810
1580
1430 | 1691
1624
1470
1248
1247 | 4416
4280
3949
3269
2477 | 1832
1572
1444
1247
1212 | 1625
1563
1436
1248
1214 | 1648
1688
1456
1257
1219 | 4315
4184
3840
3197
2452 | 7955
7792
7409
6690
5498 | 7932
7769
7388
6673
5505 | 7993
7930
7438
6708
5514 | | 8
9
10
11 | 15,000 | 0.862
.884
.861
.971
.861
.867 | 1186
1187
1176
1189
1176
1185 | 0.803
.806
.912
.798
.811
.802 | 448
448
448
451
450
454 | 506
507
307
309
509
812 | 1815
1819
1812
1609
1811
1806 | 2018
1790
1458
1443
1063
1067 | 1654
1448
1161
1157
646
850 | 4146
5872
2807
2788
1718
1702 | 1613
1419
1148
1142
839
848 | 1674
1473
1192
1177
867
868 | 1655
1456
1178
1165
856
860 | 4045
3564
2738
2724
1684
1668 | 7922
7413
5688
6670
5502
5498 | 8073
7554
8813
8770
5590
5564 | 8023
7506
6784
6735
5556
5636 | | 12
13
14
15
16 | 25,000 | 0.577
.575
.575
.575
.575 | 769
775
782
765
774 | 0.818
.803
.816
.815 | 443
446
447
446
447 | 502
504
504
505
506 | 1193
1165
1192
1185
3198 | 2028
1958
1780
1464
1055 | 1635
1581
1441
1175
844 | 2768
2639
2409
1843
1124 | 1625
1558
1422
1152
840 | 1575
1502
1365
1111
806 | 1578
1506
1485
1186
862 | 2692
2676
2547
1812
1100 | 7953
7796
7417
8688
5494 | 7835
7654
7275
6567
5389 | 8086
7910
7527
6780
5584 | | 17
18
19
20
21 | 35,000 | 0.578
.575
.576
.576
.578 | 494
494
491
484
486 | 1.21
1.20
1.21
1.20
1.22 | 394
395
394
395
395 | 509
509
510
510
512 | 1209
1201
1206
1204
1209 | 2020
1953
1790
1450
930 | 1637
1583
1480
1166
718 | 2783
2687
2494
1842
346 | 1618
1500
1684
1149
722 | 1618
1558
1494
1146
720 | 1660
1591
1450
1170
732 | 2688
2585
2547
1797
921 | 7953
7792
7420
6682
5482 | 7953
7762
7420
6673
5485 | 8031
7898
7485
6741
5530 | | 22
25
24
25
25 | | .362
.362
.367
.362
.567 | 482
485
490
490
461 | .804
.808
.805
.809 | 445
444
444
440 | 509
502
499
602 | 753
745
750
753
749 | 2055
1950
1900
1600
1663 | 1661
1610
1581
1498
1326 | 1758
1684
1696
1544
1594 | 1528
1568
1506
1481
1319 | 1441
1391
1342
1270
1182 | 1683
1621
1565
1480
1372 | 1694
1638
1586
1500
1388 | 7951
7788
7631
7420
7097 | 7482
7356
7207
6990
6719 | 9086
7919
7782
7944
7857 | | 27
28
28 | | .382
.387
.382 | 502
492
492 | .788
.803
.796 | 447
448
447 | 603
600
504 | 756
752
748 | 1478
1220
1083 | 1183
967
847 | 1180
901
999 | 1170
955
868 | 1051
850
763 | 1207
991
692 | 1146
878
685 | 5670
5013
5492 | 6262
5671
5156 | 6745
6126
5673 | | 50
51
52
53 | 45,000 | 0,220
.223
.225
.220 | 301
304
507
295 | 0.789
.806
.794
.819 | 443
445
443
444 | 499
503
499
503 | 458
486
455
458 | 2020
1990
1940
1830 | 1659
1635
1597
1490 | 1057
1048
1021
944 | 1614
1590
1540
1452 | 1455
1404
1566
1267 | 1676
1641
1602
1498 | 1029
1020
993
915 | 7645
7782
7653
7408 | 7593
7512
7209
6970 | 9000
7906
7604
75122 | | 34
55
56
57 |
 | .220
.221
.224
.225 | 300
298
307
310 | .804
.818
.900
.795 | 445
444
445
447 | 500
503
500
503 | 456
459
468
470 | 1710
1500
1330
1140 | 1379
1211
1049
898 | 979
723
626
465 | 1361
1188
1051
912 | 1208
1052
932
403 | 1413
1226
1081
941 | 848
701
807
435 | 7106
6887
6265
6564 | 6695
8274
5699
5280 | 7240
8772
6583
865@ | | 38
39
40
41
42 | 55,000 | 0.139
.137
.136
.138
.137 | 185
189
185
194
192 | 0.791
.908
.818
.791
.792 | 458
457
457
480
480 | 515
518
518
518
518 | 294
290
287
283
290 | 2000
1897
1770
1605
1300 | 1644
1548
1459
1308
1067 | 625
878
554
466
322 | 1603
1819
1413
1284
1087 | 1375
1308
1215
1096
685 | 1515
1528
1416
1287
1039 | 504
561
519
453
316 | 7829
7407
7178
6828
6011 | 7069
6875
5657
5308
5554 | 7659
7429
7185
6536
6017 | | 43
44
45
48
47 | | .100
.101
.101
.101 | 192
195
188
198
196 | .417
.417
.418
.403
.389 | 501
499
499
501
501 | 518
517
517
517
517 | 216
220
220
219
221 | 1971
1907
1805
1843
1590 | 1637
1597
1494
1360
1366 | 454
439
395
355
284 | 1582
1532
1446
1320
1317 | 1242
1205
1138
1056
1063 | 1585
1538
1452
1325
1329 | 441
426
384
347
260 | 7506
7345
7080
8678
8002 | 8451
8514
8280
5916
5316 | 7514
7359
7095
6691
8013 | # TABLE I. - CONTINUED. ENGINE PERFORMANCE DATA. | Run | ALP | flow, 1b/ | Bec . | Combus | Combon - | Fue | flow, lb/ | hpr | hake | Scale | jet thrus | t, 1b | Scale | net thrus | t, 16 | | wat aproif | io fam) | Englise | Engine | |----------|----------------|----------------|-----------------------|---------------|----------------|--------------|--------------|---|--------------------------|--------------|---|--------------------------------------|--------------------------|----------------------|-----------------|----------------|--------------------------|-----------------|------------------|--------------------------------| | | Actual, | Milusted, | Cor- | tion
offi- | tion
pares- | Actual, | Adjusted, | Corrected, | jet
thrust | Actual, | Adjusted, F _{j, p} /b _a | Cor- | Actual,
Yn,s | Adjusted,
Yu,s/Qa | Cor-
rected. | , co | naumption,
lb/hr | | temper-
ature | ratio, | | | U _R | Ve Ve | $\sqrt{\theta_{T,1}}$ | nb | eter, | -1 | 0 √9 T | $\frac{1}{\mathbf{0_{T,1}}\sqrt{\theta_{T,1}}}$ | r _{j,r} ,
1b | 1, | - 3,# -1 | P _{j,0}
0 _{T,1} | 11,11 | -u,b-a | Pn. s | | b thrust | | Tatio, | P ₆ /P ₁ | | | | | 6 _{7,1} | | 1 * ' | | OR TO DE | T,1 * T,1 | 1.0 | ŀ | | 5T,1 | | ! | B₩,1 | Actual, | Adjusted, | Cor-
rested, | - 7 -1 | | | | | | [~~] | | [| | | | | ſ | [| | | | | [r
=, w | $r_{n,s}\sqrt{\sigma_s}$ | W _r | [[| [| | 1 | | | | | | | | | | ļ | | | | | | | - n, p a | n. 1 | i | | | | - | | | | | | | | Exhquet- | nozzle | area, 2,30 | 8 sq ft | | - | | | · | · | | | | 1 | 131.3 | 138,9 | 143.1 | 0.980 | 21,4 | 7480 | 7757 | 8230 | 8228 | 8181 | 8506
8051 | 8958 | 8181 | 8508 | 8958 | 0.915 | 0.912 | 0.916 | 3.175 | 2.285 | | 3 | 129.7
125.1 | 154.7
198.3 | 140.7
133.5 | .979
.979 | 20,4
17,8 | 6960
5740 | 7210
5847 | 7645
5267 | 7800
6725 | 7771
6869 | 6929 | 8470
7256 | 7771
66 69 | 8051
6929 | 8470
7256 | .898
.860 | .895
.858 | .901
.854 | 3.058
2.804 | 2,200 | | 6 | 107.1
84.8 | 111.3
66.9 | 114,4
67,7 | .992
.982 | 7,83 | 3820
2210 | 3987
2294 | 4119
2330 | 4628
1798 | 4535
1764 | 4707
1828 | 4871
1854 | 4535
1754 | 4707
1829 | 4871
1854 | 1.252 | .842
1.253 | ,848
1,256 | 2.421 | 1.560 | | 6 | 124.0 | 122.4 | 142.9 | 0,977 | 20,0 | 7050 | 7226 | 6332 | 9343 | 9216 | 8270 | 10754 | 6002 | 5038 | 7004 | 1.175 | 1.197 | 1.190 | 3.188 | 2.266 | | 7 | 117.5 | 115.7
100.5 | 134.7 | .991
.995 | 18.6 | 5550
5120 | 5458
5223 | 5278
5687 | 7913
5447 | 7598
5285 | 7736
5339 | 8953
8150 | 4650
2026 | 4873
2668 | 5400
3070 | 1.146 | 1.168
1.210 | 1.161
1.201 | 2.804 | 2.018
1.550 | | 10 | 99.5
66.5 | 98.3
68.2 | 115.3
78.7 | .981
.981 | 11.4
5.58 | 3080
1054 | 3135
1065 | 3659
1245 | 5377
2053 | 5186
1898 | 5202
1923 | 5068
8215 | 2616
160 | 2524
162 | 3061
187 | 1.177
6,586 | 1.195 | 1,189 | 2.244
1.648 | 1.544 | | ü | 62,5 | 62.3 | 72.8 | .974 | 6,38 | 1023 | 1045 | 1207 | 1969 | 1826 | 1843 | 2142 | 200 | 202 | 234 | 5.115 | 5.178 | 5,150 | 1.656 | .943 | | 12
13 | 82.1
80.1 | 85.1
82.6 | 143,3
141,0 | 0.889 | 13.3
12.5 | 4590
4340 | 4708
4317 | 8442
7866 | \$257
5880 | 5237
5811 | 8349
5867 | 11084
10878 | 4094
3741 | 4170
3790 | 7245
6681 | 1.148 | 1.120
1.139 | 1.185 | 3.235
3,091 | 2.32
2,25 | | 14
15 | 76.7 | 75.5 | 134.1 | .961
.960 | 10.9 | 3540
2160 | 3486
2163 | 5377
3888 | 5177
3612 | 5057
3507 | 5077
3595 | 8976
6256 | 3081
1771 | 3095
1815 | 5469
3169 | 1,149 | 1,127 | 1,186
1,231 | 2.821 | 2.02
1.555 | | 18 | 66,2
42.3 | 69.1
43.7 | 116.5
74.1 | .987 | 7,62
5.55 | 650 | 676 | 1222 | 1297 | 1146 | 1162 | 2034 | 1//12 | 43 | 75 | 16,19 | 1.192
15.88 | 16.39 | 2.201
1,660 | ,943 | | 17 | 82.2 | 69.6 | 142.4 | 0.983 | 13.3 | 4650
4280 | 4887 | 8220
7815 | 8927
8800 | 6763
8441 | 6817
6493 | 11855
11349 | 3782 | 3792 | 8584
5197 | 1.236 | 1.236 | 1.248 | 3.179 | 2.263 | | 18 | 80.3
76.7 | 81.0
77.8 | 140.1
133.5 | 977 | 10,9 | 5550 | 4308
3579 | 8250 | 5915 | 5755 | 5836 | 10100 | 3517
2949 | 3545
2990 | 5175 | 1.217 | 1.215
1.107 | 1.229 | 3.065
2.792 | 2.212
2.010 | | 20
21 | 65,8
45,3 | 66.4
44.4 | 114.7
75.2 | ,992
1.004 | 7.56 | 2050
415 | 2063
425 | 5635
731 | 4250
1554 | 4117
1497 | 4150
1534 | 7254
2620 | 1715 | 1728 | 3015 | 1.195 | 1.193 | 1.206 | 2.253 | 1,530
.783 | | 22 | 51.6 | 66,5 | 142.7 | .976 | 8,41 | 3000 | 2857 | 8571 | 3921 | 5950 | 3997 | 11100 | 2616 | 2246 | 7351 | 1,147 | 1.079 | 1.156 | 3.243 | 2,31 | | 25 | 50,2
50,1 | 54.7
53.9 | 138.9
138.5 | .955
,954 | 7,86
7,58 | 2600
2600 | 2709
2495 | 7840
7482 | 3712
3577 | 3714
3546 | 3814
3603 | 10633
10003 | 2411
2258 | 2476
2292 | 6838
6364 | 1.161 | 1.094 | 1.180 | 3.124
3.010 | 2.26
2,171 | | 25
26 | 48.8
45.1 | 52.6
50,4 | 134.9
127.8 | .971
.974 | 6.08 | 2500
1900 | 2201
1862 | 8571
5474 | 3330
2922 | 3326
2697 | 3579
2898 | 9346
8184 | 2060
1887 | 2093
1746 | 5769
4765 | 1.117 | 1.052 | 1.136
1.148 | 2,851
2,643 | 2.053 | | 27 | 41.3 | 43.8 | 113.7 | .840 | 4.83 | 1410 | 1315 | 1008 | 2252 | 2242 | 2224 | 5275 | 1196 | 1185 | 3345 | 1.180 | 1.108 | 1.199 | 2.320 | 1.58 | | 28 | 34.9
25.6 | 37.5
27.6 | 96.5
71.4 | .934
.984 | 3,34
2,22 | 000
456 | 764
418 | 2294
1257 | 777 | 1449 | 1466
810 | 4007
R265 | 550
142 | 557
144 | 1648
400 | 1.455
3.085 | 1.372
2.806 | 1.482
3,131 | 1.910 | 1,188
.855 | | 30 | 30.9 | 33.5
33.8 | 159.9 | 0.927 | 4,98 | 1870 | 1805 | 8810 | 2552 | 2386 | 2419 | 10928 | 1575 | 1611 | 7277 | 1.187 | 1,119 | 1,210 | 3.234 | 2.31 | | 25
25 | 31.1
30.7 | 32.7 | 138.9
137,2 | .952
.955 | 4,75 | 1761
1868 | 1695
1576 | 8215
7741 | 2511
2222 | 2338
2219 | 2388
2226 | 10617
10089 | 1533
1436 | 1563
1440 | 6961.
6535 | 1,162 | 1.092
1.094 | 1.180 | 3.161
3,086 | 2,196 | | 53 | 29.1 | 32,5 | 132.4 | .930 | 4.23 | 1458 | 1431 | 6933 | 5012 | 2054 | 2144 | 9489 | 1289 | 1346 | 5955 | 1.130 | 1.064 | 1,140 | 2.687 | 2.06 | | 34
35 | 28.3
25.3 | 30.9
28.0 | 198.9
115.1 | ,953
,967 | 3.86
3.01 | 1258
880 | 1217
862 | 5909
4121 | 1826
1407 | 1809
1384 | 1868
1441 | 8339
8380 | 1079
719 | 1108
748 | 4974
3515 | 1,166 | 1.098
1,162 | 1.188
1.245 | 2.722 | 1.90
1.574 | | 36
37 | 22.9 | 24.4
17.2 | 101.5 | .972
.629 | 2.40 | 620
575 | 585
550 | 2658
1715 | 1073
512 | 1078
557 | 1081 | 4074
2481 | 491
134 | 492
133 | 2220
605 | 1.285 | 1.189 | 1,267 | 2.102 | 1.338 | | 36 | 17,8 | 18.9 | 128.3 | 0.908 | 2.87 | 1080 | 979 | 7795 | 1505 | 1309 | 1282 | P409 | 847 | 850 | 6090 | 1.275 | 1.181 | 1,290 | 3.113 | 2,122 | | 39 | 17.3 | 18.6 | 125.6
122.0 | 906 | 2.52 | 953
790 | 894
756 | 8971
5832 | 1203
1087 | 1101 | 1204
1114 | 8887
7958 | 730
638 | 746
658 | 5580
4606 | 1,292 | 1,199 | 1.298 | 2.726 | 1.222 | | 40 | 16.6
15.5 | 18.4
16.6 | 111.5 | .930 | 2,54 | 620 | 564 | 4482 | 887 | | | | 1 | | | | | | 2.479 | 1.690 | | 42 | 11.1 | 12,0 | 81.2 | .063 | 1,16 | 310 | 265 | 2563 | 450 | 452 | 450 | 3238 | 164 | 163 | 1194 | 1.893 | 1,749 | 1,885 | 2.002 | 1.110 | | 45 | 12.8
12.6 | 14.4
13,9 | 124.6
121.2 | .967 | 2.02 | 770
705 | 679
612 | 7537
6500 | 814
770 | 506
752 | 802
757 | 7881
7240 | 624
573 | 621
561 | 6104
6514 | 1,235
1,251 | 1.093 | 1.234 | 3.064
2.983 | 2,098
1,997 | | 45 | 11.8 | 15.0
11.9 | 113.0
104.7 | .903
.915 | 1.70 | 600
488 | 521
402 | 5788
4508 | 662
530 | 649
499 | 656
486 | 6242
4819 | 441
350 | 472
341 | 4650
3560 | 1,246 | 1.105
1.179 | 1,248 | 2,767
2,558 | 1,795
1,620 | | 47 | 7.2 | 7.6 | 68.4 | .844 | .94 | 352 | 264 | 31,85 | 245 | | | | | | | | | | 2.547 | 1.195 | ## TABLE I. - CONTINUED. ENGINE PERFORMANCE DATA. | Bur) | Approximate
altitude,
ft | Reynolds
maker
index, | Tail-pipe
statle
pressure, | Plight
Mach | Equiv-
alent
amblent- | Engine-
inlet
total | Engine-
injet
total | Turbing-
inlet
total | Turbine-
cutlet
total | 1 2222 | | | emperature, | Tail-
pipe
total | | cine speed | | |----------------------------------|--------------------------------|---|--|---|---|--|--|--|---|--|---|---|---|--|--|--|--| | | ,,, | ⁶ 7,1
7-√ 77,1 | Po- | × ₀ | eir
statio
temper-
ature,
co,er | temperature, | pressure,
Pl,
1b | temperature, | température,
Fa,
O _B | pressure,
Is
ad it was | Actual, | Adjusted,
Ty/Pa | Corrected, 27/87,1 | presente,
Py,
15
Pg Tt abs | Actual, | Majusted,
M/-√V _E | Corrected
B/-/U _{F,} | | | _ | | | | | · · · · · · · · · · · · · · · · · · · | Ext | most-nousle | res, 2,514 s | Q [E | | | L | | | | | | 48
49
50
51 | 0 | 0.942
.938
.947
.942 | 2060
2052
2068
2048 | 0 0 0 | 514
514
514
514 | 505
506
506
508 | 1945
1937
1962
1942 | 1940
1880
1753
1750 | 1596
1535
1413
1400 | 4218
4115
3666
3832 | 1633
1483
1392
1396 | 1548
1498
1408
1403 | 1576
1592
1494
1425 | 4140
4034
3775
3756 | 7845
7790
7417
7409 | 7985
7829
7454
7448 | 9055
7889
7812
7504 | | 52
53
64
55 | | .955
.956
.864
.984 | 2048
2058
2065
2061 | 0000 | 512
513
500
510 | 506
807
507
506 | 1969
1972
2056
2054 | 1527
1550
1455
1450 | 1291
1224
1237
1252 | 3267
3271
3515
3515 | 1224
1214
1214
1239 | 1257
1259
1258
1254 | 1256
1253
1243
1256 | 3800
3820
2484
2486 | 6683
6670
5489
5489 | 6712
6710
8544
8538 | 8750
8748
5555
5548 | | 58
57
58
59
60
61 | 15,000 | 0.828
.890
.885
.885
.897
.897 | 1058
1183
1171
1171
1193
1198 | 0.840
.805
.808
.808
.799
.799 | 443
443
443
442
444
444 | 505
505
501
500
501
502 | 1679
1819
1797
1798
1818
1825 | 1930
1930
1850
1893
1415
1050 | 1549
1662
1492
1361
1116
836 | 5740
3875
3749
3446
2721
1720 |
1300
1496
1482
1326
1106
832 | 1561
1563
1595
1395
1166
869 | 1848
1644
1504
1877
1146
860 | 3867
8790
8646
8844
2680
1688 | 7841
7839
7794
7492
6699
5475 | 8186
8114
7989
7515
6653
8893 | 8088
8064
7935
7562
6818
8566 | | 62
53
54
56
56 | 25,000 | 0.582
.864
.860
.882
.581 | 777
780
780
784
779 | 0.806
.809
.806
.805 | 442
444
445
443
443 | 499
502
507
500
500 | 1111
1200
1106
1100
1100 | 1925
1853
1703
1415
1060 | 1531
1442
1350
1111
944 | 2643
2505
2276
1798
1140 | 1513
1456
1332
1113
855 | 1475
1410
1292
1081
830 | 1574
1506
1380
1156
887 | 2504
9443
2917
1766
1127 | 7947
7790
7415
8678
8630 | 7842
7657
7308
6580
5449 | 8104
7991
7547
8804
5854 | | 87
88
89
70
71 | \$5,000 | 0,543
.583
.683
,580
.541 | 473
458
489
479
478 | 1.25
1.24
1.24
1.22
1.22 | 388
388
387
382
399 | 506
805
506
510
515 | 1193
1193
1194
1196
1208 | 1907
1888
1670
1378
895 | 1524
1456
1323
1076
582 | 2529
2451
2218
1884 | 1500
1440
1318
1068
590 | 1525
1470
1539
1075
681 | 1542
1490
1849
1067
694 | 2480
2579
2188
1646
648 | 7846
1766
7413
9576
5432 | 8024
7654
7480
5691
5398 | 8078
7883
7508
8737
8433 | | 72
73
74
76
78 | | .373
.430
.371
.430
.371 | 494
483
498
491
492 | .808
.815
.798
.808
.809 | 441
391
444
384
441 | 496
443
500
445
499 | 757
747
757
754
758 | 1930
1897
1883
1783
1715 | 1553
1517
1510
1418
1367 | 1636
1746
1579
1633
1449 | 1524
1498
1454
1377
1346 | 1359
1510
1292
1377
1909 | 1588
1758
1508
1608
1400 | 1601
1702
1548
1588
1418 | 7845
7945
7768
7626
7402 | 7511
7877
7340
7826
8884 | 8111
6599
7935
8634
7848 | | 77
78
79 | | .428
.370
.380 | 490
802
486 | .808
.782
.808 | 395
445
444 | 448
501.
502 | 781
789
745 | 1500
1435
1087 | 1187
1136
547 | 1401
1196
682 | 1177
1150
856 | 1174
1000
758 | 1370
1171
685 | 1388
1102
874 | 8947
6870
8432 | 8638
6276
5316 | 7484
6789
8623 | | 80
81
82
83 | 45,000 | 0,263
.263
.230
.226 | 310
309
304
296 | 0.975
.799
.81.5
.880 | 3786
3297
438
437 | 448
447
498
498 | 469
487
448
460 | 1980
1775
1917
1860 | 1554
1453
1554
1512 | 1000
1001
1000
984 | 1519
1398
1508
1460 | 1507
1388
1353
1312 | 1768
1628
1577
1527 | 1044
874
987
983 | 7945
7819
7941
7796 | 783.2
75.79
75.92
75.90 | 8671
8200
8125
7174 | | 84
85
86
87 | | .226
.989
.224
.237 | 294
316
295
308 | .630
.766
.621
.600 | 437
357
456
443 | 497
448
487
488 | 449
478
459
466 | 1718
1628
1448
1008 | 1363
1211
1121
879 | 676
658
693
435 | 1345
1198
1134
870 | 1210
1187
1018
774 | 1404
1384
908
907 | 859
835
675
725 | 7390
8932
8667
\$504 | 7010
5063
5316
5183 | 7652
7478
6013
5419 | | 88
89
90
91
92 | 55,000 | G.150
.140
.157
.140
.138 | 193
193
186
190
187 | 0.785
.795
.785
.802
.808 | 407
441
407
440
440 | 458
458
459
436
437 | 292
293
295
290
297 | 1963
2017
1830
1940
1797 | 1596
1610
1483
1554
1400 | 643
630
596
602
543 | 1664
1604
1443
1537
1425 | 1801
1429
1391
1373
1971 | 1761
1678
1639
1808
1486 | 629
619
561
590
523 | 7983
7985
7887
7771
7384 | 7815
7536
7494
7344
6979 | 8488
8168
8110
7949
7846 | | 13
14
15
14
17 | | .155
.138
.134
.124
.125 | 184
184
182
197
192 | .809
.820
.813
.425
.475 | 408
641
641
642 | 462
489
489
460
461 | 265
266
261
227
824 | 1543
1490
1147
2007
1885 | 1252
1356
925
1657
1640 | 490
417
285
505
479 | 1219
1176
#18
1595
1499 | 1174
1063
881
1418
1336 | 1569
1295
965
1799
1666 | 475
409
265
464 | 8645
8645
5579
7851
7642 | 673P
6268
5218
7497
7174 | 727]
6765
5637
8448
8108 | | 95
100
101
109 | | .105
.105
.104
.107 | 188
180
187
193
196 | .478
.485
.487
.467
.471 | 475
475
474
797
443 | 487
497
498
208
483 | 281
283
280
284
287 | 2050
2057
1890
1860
1860 | 1633
1434
1592
1478
1336 | 479
478
483
438
406 | 1509
1885
1586
1496
1315 | 1551
1545
1516
1256
1167 | 1680
1694
1659
1562
1474 | 469
446
491
478
594 | 7824
7884
7742
7436
0016 | 7909
7171
7049
6786
6580 | 9099
9068
7919
7569
7407 | | 105
104
104 | | .106
.106
.106 | 190
177
187 | .480
.584
.539 | 477
488
472 | 497
498
499 | 201
227
784 | 1958
1572
1577 | 1700
1120
1156 | 347
269
267 | 1234
1105
1125 | 1018
932
937 | 1290
1151
1170 | 541
968
257 | 6634
6112
5786 | 6088
5613
6200 | 8779
8840
5800 | TABLE I. - CONTINUED. ENGINE PERFORMANCE DATA. | Rose | Alr | flow, 1b/ | /see | Combas- | Combas- | Per | 1 flow, 1b | /har- | Rake | Beale | jet theu | t,]b | Scale | net three | et, 16 | Net Us | rust specif | ir [gel | ing ine | hngin. | |-------------|----------------|----------------|----------------|---------------------|-------------------------------|----------------|----------------------|------------------------------------|----------------|--------------|---------------|----------------|-------------------|---------------|----------------|-------------------------|--------------------|-----------------|----------------|------------------------| | | | Ad Just ed | Cor- | tion
wifi- | tius
parem- | Astual, | Adjusted, | Corrected, | int | Lotuel, | Adjusted, | Cor- | Aotzál, | | | • | aumotina,
Ju∕hr | | Lemper- | pressure
ratio, | | | W _a | Va-Va | rested, | olency, | eter, | W _C | 1/5 | Vr. | i,r
lb | y 5, a | Pj, 2/02 | rested, | ۴۵,3 | Pn,s/8a | rented | ` | Lo Chrust | | ratio, | P / P 1 | | | | 50 | 47.1 | ጭ | W _A T ₇ | | 4/6" | 5 _{7,1} √6 _{7,1} | 115 | | | 0 7,1 | 1 | | 1,1 | We/Fn, | Adjusted,
Yr | Cor-
rected, | יזי√ד | i | | | | | 7,1 | | | | | | | | | *,,± | | | -,- | "EY-n, | | J. P. | Į. | l | |] |] | } | J |] |] | | J | j | | | J | J | | J | J | | Fo,s Va | n, s/0T, | 1 | | | | L—— | | | 1 | | | | | Crhana t- | nounle | gres, 2,5). | L en ft | | | <u> </u> | 1 | | 1-//- | 1 | l . | | 48 | 134.8 | 137.2 | 246.7 | 0.175 | 20.8 | 7075 | 7302 | 7811 | 7766 | 1790 | 8005 | 8486 | 7792 | 8008 | 8486 | 0.909 | 0.913 | 0.991 | 5.036 | 2.171 | | 49 | 131.3 | 134.7 | 141.6 | ,565 | 19.5 | 6800
6586 | 6839 | 7299 | 7388
6848 | 7373
6493 | 7802 | 8081
7038 | 7373
6493 | 7609 | 6061
7034 | .895 | .900 | .908 | 2.931 | 2.124 | | 50
51 | 125.8
125.0 | 128.5 | 134.6
134.4 | .964
.975 | 17.5
17.4 | 5585 | 5770
57 98 | 8151
8165 | 6425 | 6150 | 6676
6653 | 7051 | 6450 | 6675
6663 | 7031 | ,861
,867 | .865
.871 | ,873
,878 | 2,751 | 1,875
1,875 | | 52 | 108.1 | 110.9 | 114.7 | .945 | 13.2 | 3875 | 4031 | 4219 | 451.9 | 4534 | 4665 | 4855 | 4510 | 4665 | 4856 | .678 | .863 | .880 | 2.411 | 1,668 | | 55 | 108.6
65.5 | 111,3
66,5 | 118.2
67.3 | .975 | 13.5
7.95 | 3676
2270 | 4019
2350 | 4207
2388 | 4555
1800 | 4540
1827 | 4681
1875 | 4871
1898 | 4540
1827 | 4001
1078 | 4871
1886 | .865
1.243 | 1,266 | 1.254 | 2.414
2.394 | 1.659
1.234 | | 55 | 65.5 | 61,4 | 65,2 | ,965 | 7,80 | 2300 | 2383 | 2418 | 1764 | 1764 | 1014 | 1832 | 1766 | 1014 | 1832 | 1.304 | 1,316 | 1.317 | 2.425 | 1.239 | | 56
57 | 119.8
125.0 | 131.4
193.5 | 148.2
145.7 | 0,938
,975 | 17.9
16.7 | 6320
6320 | 7321
6511 | 8089
7498 | 8850
8872 | 8537
8705 | 9743
8775 | 10883
10167 | 5422
5489 | 6116
6613 | 6832
6388 | 1.166 | 1.197 | 1.183 | 2,982 | 2.228
2.137 | | 58
59 | 125.2 | 122.5
116.0 | 142.6 | .968
,967 | 17,9 | 5970
4923 | 8235
5148 | 7158
5508 | 8540
7558 | 8390
7388 | 8549
7529 | 9863 | 5200
4344 | 4299 | 6126 | 1.148 | 1.177 | 1.168 | 2.898 | 2,085 | | 60 | 105.1 | 100.8 | 118.1 | .964 | 15,8 | P#90 | 3058 | 3645 | 5356 | 5148 | 5146 | 5995 | 2502 | 4427
2502 | 5113
2915 | 1,134 | 1.158 | 1,155 | 2.652 | 1.917 | | 41 | 47.0 | 66.3 | 76.5 | 1.025 | 5.57 | 1018 | 1030 | 1195 | 2033 | 1851 | 1863 | 2102 | 171 | 170 | 199 | 6,918 | 8,048 | 6,017 | 1,667 | ,944 | | 62
63 | 82.3 | 85.4 | 148.4 | 0,974 | 12.4 | 4950
3980 | 4178
3941 | 7702 | 5880
5464 | 5787
5557 | 5845
5590 | 10953
9797 | 3694
3439 | 37(I)
3460 | 6511
6062 | 1.150 | 1.145 | 1.163
1.176 | 3.052
2.900 | 2.086 | | 84 | 17.4
67.9 | 79.1
69.0 | 134.7
117.7 | 972 | 10.8
7.56 | 8240
2000 | 3910
1973 | 5840
3599 | 4948
3651 | 4845
3370 | 4874
5375 | 8580
8861 | 2844
1622 | 2861
1624 | 5037
2554 | 1.157
1.159
1.235 | 1.122 | 1.150
1.264 | 2.65.0 | 1.501 | | 65
66 | 44,3 | 45.3 | 77,2 | 1,040 |
3.79 | 710 | 705 | 1984 | 1404 | 1518 | 1369 | 2529 | 175 | 177 | 512 | 4.034 | 3.976 | 4.110 | 1.710 | .968 | | 47
48 | 81,1
79.9 | 84.8 | 149.0
139.9 | 0.940 | 12.2
11.5 | 43.5D
3840 | 4411
4187 | 7482 | 649E
6735 | 8424
6261 | 8784
5662 | 11396 | 3429
3238 | 3811
3805 | 8083
5851 | 1.215 | 1.221
1,176 | 1.230 | 2.970 | 2.120
2.054 | | 60 | 77.0 | 81,1 | 134.8
116.1 | .005 | 10.1 | 3070 | 3266 | 5509 | 5616 | 5396 | 5731 | 9562 | 9537 | 2094 | 4498 | 1,210 | 1,221 | 1.225 | 2,598 | 1,858 | | 70
71 | 40.3 | 41.0 | 70.4 | .988
,884 | 7.02
2.78 | 1779
538 | 1050
359 | 31.57
594 | 3991
1371 | 3872
1285 | 4035
1298 | 8951 | 1444 | 1508 | 2080 | 1,227 | 1,229 | 1,230 | 2,094
1,340 | 1.406 | | 72 | 52,0 | 55.4 | 148.4 | ,945 | 7,93 | 2750 | 262) | 7847 | 3742 | 3548 | 5677 | 10196 | 2508 | 2326 | 6451 | 1.182 | 1.127 | 1.917 | 5.080 | 2.141 | | 75 | 53.5
57.5 | 57.0
54.8 | 145,9 | ,969 | 8,31
7,48 | 2970
R550 | 3074
2403 | 9107
7282 | 4050
3542 | 4055
3487 | 4181
3487 | 13.450
1746 | 9689
9170 | 2775
2170 | 7598
6086 | 1.103 | 1.107 | 1.194 | 5.361
2.908 | 2.337
2.088 | | 75
76 | 54.0 | 55.6
52.0 | 148.5
135.7 | .903 | 7,55
6,65 | 2000 | 2586
9008 | 7727
5994 | お辞 | 3714
3091 | 5766
31,98 | 10421
8652 | 2375
1812 | 2408
1834 | 6659
5078 | 1.075 | 1,076 | 1,161 | 3.094 | 2.166 | | 77 | 50.3 | 51.2 | 131.4 | ,058 | 5,92 | 1843 | 1870 | 5403 | SE 83 | 2001 | 3039 | 8429 | 1785 | 1792 | 4968 | 1.045 | 1,044 | 1.127 | 2,639 | 1.866 | | 78
78 | 49.0 | 44.3
98.8 | 115.1 | .070
.072 | 4,75 | 1308 | 1991 | 5719
1565 | 201
755 | 2076
718 | 2069
737 | 5764 | 1007 | 999 | 8400
2283 | 1.299 | 1,222 | 1.592 | 2,255 | 1,486 | | | - | | | | 1.11 | 1 | | | | 2458 | | 2059 | | | | 5.839 | 5.500 | 6.937 | 1,705 | .914 | | 80
81 | 34,4
33,4 | 34.3
33,5 | 143.7
140.6 | 0.980
.864 | 5. <u>22</u>
4.67 | 1870
1836 | 1850
1822 | 91.00
7987 | 24 PP
22 77 | 2255 | 2143
2248 | 11093
10217 | 1628
1452 | 1822
1447 | 7348
6578 | 1.145 | 1,140 | 1,214 | 3.406
3.198 | 2.279
2.144 | | 82
83 | 32,2 | 34,4
34,1 | 142.0 | .046 | 4.85 | 1718
1585 | 1648
1575 | 7899
7606 | 2306
2174 | 2255
2135 | 2284
2220 | 10175
8821 | 1420
1324 | 1438
1577 | 7929
7505 | 1,206 | 1,140 | 1,238 | 2,944 | 2,150
2,005 | | 84 | 30.3 | 33.4 | 135.7 | ,950 | 4,07 | 1309 | 1301 | 5125 | 1966 | 1895 | 1986 | 8679 | 1095 | 1148 | 63.96 | 1,185 | 1,134 | 1.221 | 2.706 | 1,900 | | 85
84 | 31.1 | 30.4
26.7 | 128.0 | , 951
, 998 | 3,72
2,85 | 1185
786 | 1148
789 | 5873
5759 | 1825
1385 | 1805 | 1767 | 4014 | 1060 | 1055 | 4719
3789 | 1.114 | 1.111 | 1,204 | 2,686 | 1,803 | | 87 | 16.3 | 17,4 | 72,6 | .836 | 1.42 | 343 | 394 | 150 | 494 | 500 | 501 | 8271 | 82 | 83 | 1590 | 4.183 | 3.947 | 4.271 | 1.747 | ,934 | | 88
88 | 20.8 | 21,0
21,0 | 142.0 | 0.967 | 3.24 | 1165
1131 | 1150
1058 | 8120
8384 | 1527
1471 | 1457
1420 | 1422
1405 | 10427 | 930
918 | 990 | 6748 | 1.279 | 12.50
1.171 | 1.554 | 3.395 | 9,204
2,160 | | 90
91 | 20.0 | 20,# | 141.0 | .056 | 5.20
2,88 | 1003 | 1012 | 7889 | 1387 | 1287 | 1322 | 10991
9440 | 798 | 950
802 | 5009
5017 | 1.957 | 1,235 | 1.250 | 3.234 | 2,106 | | 91 | 19.3
18.5 | 20.6 | 155.0
151.7 | 980
975 | 2,97 | 1023 | 872
822 | 7836
6419 | 1378
1210 | 1352 | 1550
1196 | 8720
8434 | 837
700 | 841
715 | 61.08
51.62 | 1.227 | 1.156
1,150 | 1.244 | 3.009
2.005 | 2.080
1.890 | | 83 | 18,1 | 19.1 | 197.5 | ,957 | 2,20 | 886 | 898 | 5432 | 1069 | 887 | 1085 | 7365 | 537 | 887 | 4018 | 1.274 | 1,252 | 1.852 | 2.639 | 1,733 | | M
M
M | 15.7 | 17.9 | 115.8 | 976 | 1,65 | 523
942 | 514
240 | 3951
1858 | 858
997 | 326 | 544 | 8470 | 93 | | 700 | 2,602 | 2,458 | 2,653 | 2,341
1,840 | 1,480
,843
2,218 | | 16
17 | 16.0
15,5 | 18.5 | 140.8
139.0 | ,963
,964 | 2.53 | 94.E
94.E | 867
786 | 9396
8453 | 1075
1005 | 1025 | 918
947 | 9545
8561 | 790
710 | 588
706 | 7371
6718 | 1,186 | 1,151 | 1.274 | 3,447 | 2,218
8,142 | | | | ì | 136.1 | | | 500 | 60.8 | 8706 | 305 | 973 | 964 | 9318 | 758 | 747 | 7078 | 1.204 | 1.096 | 1.250 | 3.237 | 2,170 | | 98
98 | 14.7 | 18.4 | 138.0 | , 886
670
880 | 2.57
2.41 | 881 | 805 | 8843 | 373 | 980 | 146 | 9200 | 741 | 745 | 7031 | 1,189 | 1,062 | 1.215 | 3.965 | 2,143 | | 100 | 14.7 | 15.8 | 129.5 | .984 | 2.33
2.08 | 830
706 | 779
654 | 8166
8805 | 848 | 839
825 | 962
807 | 9484
7698 | 254
254
254 | 700
582 | 5675
5448 | 1.179 | 1.089 | 1.225 | 3,198
3,010 | 2.104 | | 102 | 14,4 | 14.9 | 120.4 | ,980 | 1.09 | 63.8 | \$67 | 8007 | 771 | 711 | 694 | 6639 | | 484 | 4804 | 1,245 | 1.173 | 1,518 | 2,840 | 1.749 | | 103 | 11.6 | 19.7
11.2 | 100.5 | ,902
,852 | 1.44 | 458
395 | 414
322 | 4461
5148 | 549
365 | 828 | 565 | 5085 | 850 | 348 | 3338 | 1.509 | 1,186 | 1,538 | 2,487 | 1.543 | | 105 | 8.4 | 77.7 | 70.7 | .951 | .05 | 296 | 275 | E792 | 287 | | | | | | | | | | 2,265 | 1.128 | # TABLE I. - CONTINUED. ENGINE PERFORMANCE DATA. | Run | Approximate | Reynolds
number | Tail-pipe | Flight
Mach | Equiv-
alent | Engine-
inlet | Engine-
inlet | Turbine-
inlet | Turbine-
outlet | Turbine-
outlet | Tail-pi | pe total t | emperature, | Tail-
pipe | Bng | ine speed | ١, | |---------------------------------|-------------|---------------------------------------|--|---------------------------|---|---|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | ft | index, | | number,
^M O | ambient-
air
static
temper-
ature,
to,e,
oR | total
temperature,
T ₁ ,
o _R | total
pressure,
P1,
1b
sq ft abs | total
temperature,
T5,
OR | total
temperature,
Tg,
OR | total pressure, Pg, lb sq ft abs | Actual,
T ₇ | Adjusted,
T ₇ /θ _a | Corrected,
T ₇ /0 _{T,1} | | Actual, | | Corrected,
N∕√ [®] T,1 | | | | | | | | | Bal | aust-nozzle | rea, 2.694 # | q ft | | | | | | · | | | 106
107
108
109
110 | 0 | 0.938
.942
.942
.958
.978 | 2053
2059
2050
2056
2056
2035 | 00000 | 514
514
513
511
513 | 505
506
505
505
506 | 1933
1942
1944
1976
2004 | 1807
1750
1640
1465
1380 | 1445
1400
1504
1151
1163 | 3851
3772
3547
3083
2424 | 1403
1358
1272
1148
1140 | 1417
1372
1287
1166
1154 | 1442
1396
1308
1180
1170 | 3762
3864
3458
3032
2403 | 7955
7788
7420
8686
5498 | 7995
7827
7465
6739
5531 | 8065
7895
7522
6778
5568 | | 111 | 15,000 | 0.888 | 1180 | 0.805 | 445 | 503 | 1806 | 1736 | 1384 | 3458 | 1553 | 1595 | 1575 | 3363 | 7953 | 8128 | 8078 | | 112 | | .888 | 1183 | .802 | 447 | 504 | 1805 | 1680 | 1334 | 3345 | 1292 | 1344 | 1331 | 3247 | 7786 | 7942 | 7901 | | 113 | | .890 | 1191 | .798 | 447 | 504 | 1812 | 1550 | 1210 | 3061 | 1194 | 1242 | 1250 | 2981 | 7415 | 7563 | 7525 | | 114 | | .891 | 1188 | .803 | 448 | 506 | 1815 | 1315 | 1011 | 2420 | 1005 | 1045 | | 2582 | 8678 | 8805 | 6763 | | 115 | | .890 | 1194 | .795 | 450 | 507 | 1810 | 1010 | 791 | 1585 | 798 | 824 | 817 | 1562 | 5411 | 5498 | 5475 | | 116 | 25,000 | 0.585 | 775 | 0.814 | 445 | 504 | 1197 | 1750 | 1382 | 2283 | 1347 | 1302 | 1387 | 2206 | 7949 | 7814 | 8067 | | 117 | | ,585 | 774 | .813 | 445 | 504 | 1195 | 1700 | 1327 | 2202 | 1307 | 1263 | 1346 | 2135 | 7795 | 7682 | 7910 | | 118 | | ,585 | 778 | .811 | 445 | 504 | 1195 | 1860 | 1209 | 2011 | 1199 | 1159 | 1235 | 1965 | 7411 | 7285 | 7521 | | 119 | | ,580 | 789 | .815 | 448 | 505 | 1189 | 1323 | 1013 | 1580 | 1015 | 979 | | 1552 | 6874 | 8563 | 6768 | | 120 | | ,586 | 778 | .811 | 448 | 507 | 1198 | 1015 | 788 | 1045 | 801 | 769 | 820 | 1029 | 5445 | 5354 | 5509 | | 121 | 35,000 | 0.596 | 486 | 1.22 | 384 | 498 | 1207 | 1773 | 1387 | 2321 | 1366 | 1402 | 1425 | 2236 | 7955 | 8058 | 8121 | | 122 | | .591 | 479 | 1.22 | | 499 | 1200 | 1707 | 1332 | 2244 | 1317 | 1351 | 1370 | 2167 | 7794 | 7895 | 7948 | | 123 | | .562 | 488 | 1.24 | 382 | 500 | 1195 | 1577 | 1216 | 2049 | 1218 | 1254 | 1262 | 1987 | 7441 | 7553 | 7581 | | 124 | | .562 | 477 | 1.23 | 386 | 503 | 1199 | 1300 | 990 | 1583 | 992 | 1013 | 1024 | 1535 | 6686 | 6753 | 6791 | | 125 | | .579 | 482 | 1.21 | 391 | 506 | 1168 | 867 | 649 | 860 | 670 | 885 | 877 | 835 | 5470 | 5492 | 5840 | | 126 | | .427 | 478 | .816 | 392 | 444 | 497 | 1770 | 1398 | 1558 | 1373 | 1381 | 1505 | 1508 | 7984 | 7988 | 8611 | | 127 | | .427 | 482 | .812 | 392 | 444 | 490 | 1627 | 1290 | 1468 | 1255 | 1260 | 1467 | 1418 | 7619 | 7634 | 8238 | | 128 | | .370 | 498 | .799 | 447 | 504 | 758 | 1763 | 1412 | 1441 | 1354 | 1193 | 1395 | 1595 | 7953 | 7466 | 8071 | | 129 | | .388 | 485 | .809 | 439 | 497 | 748 | 1685 | 1340 | 1311 | 1297 | 1163 | 1354 | 1292 | 7794 | 7380 | 7964 | | 130 | | .570 | 503 | .795 | 448 | 504 | 761 | 1703 | 1346 | 1394 | 1309 | 1151 | 1348 | 1548 | 7792 | 7307 | 7907 | | 131 | | .371 | 495 | .803 | 440 | 497 | 787 | 1570 | 1252 | 1301 | 1207 | 1080 | 1280 | 1264 | 7420 | 7019 | 7582 | | 132 | | .370 | 498 | .798 | 447 | 504 | 757 | 1573 |
1226 | 1259 | 1212 | 1088 | 1248 | 1224 | 7400 | 6947 | 7510 | | 133 | | .428 | 480 | .813 | 391 | 443 | 485 | 1393 | 1069 | 1246 | 1067 | 1074 | 1251 | 1204 | 6930 | 6951 | 7501 | | 134 | | .376 | 502 | .808 | 441 | 498 | 789 | 1324 | 1016 | 1036 | 1016 | 908 | 1059 | 1016 | 6669 | 6305 | 8809 | | 135 | | .370 | 501 | .794 | 444 | 500 | 759 | 1010 | 796 | 674 | 800 | 710 | 830 | 664 | 5426 | 5113 | 5530 | | 136 | 45,000 | 0.267 | 298 | 0.828 | 390 | 443 | 467 | 1790 | 1417 | 973 | 1388 | 1400 | 1627 | 940 | 7964 | 8000 | 8820 | | 137 | | .269 | 306 | .819 | 391 | 443 | 475 | 1653 | 1312 | 920 | 1278 | 1286 | 1498 | 889 | 7614 | 7637 | 9241 | | 138 | | .267 | 298 | .826 | 391 | 444 | 466 | 1613 | 1273 | 897 | 1248 | 1255 | 1459 | 866 | 7506 | 7529 | 8115 | | 139 | | .229 | 307 | .809 | 441 | 499 | 472 | 1793 | 1408 | 897 | 1390 | 1238 | 1446 | 869 | 7930 | 7484 | 8087 | | 140 | | .230 | 314 | .795 | 444 | 500 | 476 | 1800 | 1409 | 903 | 1396 | 1236 | 1449 | 875 | 7905 | 7438 | 8084 | | 141 | } | .227 | 302 | .813 | 441 | 499 | 468 | 1750 | 1383 | 870 | 1356 | 1209 | 1410 | 844 | 7795 | 7362 | 7949 | | 142 | | .227 | 306 | .802 | 443 | 500 | 470 | 1730 | 1358 | 864 | 1339 | 1168 | 1390 | 857 | 7775 | 7322 | 7922 | | 143 | | .223 | 301 | .806 | 443 | 500 | 461 | 1620 | 1281 | 769 | 1254 | 1113 | 1302 | 768 | 7420 | 6992 | 7560 | | 144 | | .267 | 301 | .809 | 392 | 443 | 463 | 1413 | 1098 | 778 | 1093 | 1096 | 1281 | 750 | 6924 | 6934 | 7494 | | 145 | | .226 | 309 | .794 | 444 | 500 | 488 | 1355 | 1040 | 829 | 1046 | 926 | 1068 | 615 | 6874 | 6279 | 6800 | | 145 | | .229 | 320 | .778 | 449 | 503 | 477 | 1060 | 845 | 427 | 839 | 735 | 866 | 415 | 5472 | 5121 | 5558 | | 147 | 55,000 | 0.132 | 179 | 0.815 | 439 | 497 | 277 | 1860 | 1505 | 549 | 1442 | 1291 | 1505 | 531 | 7970 | 7541 | 8144 | | 148 | | .148 | 188 | .795 | 441 | 497 | 285 | 1767 | 1422 | 529 | 1366 | 1217 | 1426 | 513 | 7771 | 7336 | 7941 | | 149 | | .138 | 195 | .786 | 443 | 498 | 293 | 1647 | 1319 | 502 | 1274 | 1130 | 1328 | 487 | 7449 | 7016 | 7605 | | 150 | | .136 | 198 | .777 | 444 | 498 | 295 | 1327 | 1044 | 379 | 1021 | 904 | 1064 | 366 | 6547 | 6159 | 6684 | | 151 | | .135 | 192 | .777 | 445 | 499 | 286 | 1173 | 919 | 270 | 922 | 814 | 959 | 266 | 5786 | 5437 | 5900 | | 152 | | .105 | 193 | .388 | 483 | 498 | 214 | 1925 | 1562 | 421 | 1506 | 1225 | 1569 | 408 | 7958 | 7161 | 8104 | | 153 | | .125 | 193 | .430 | 479 | 497 | 219 | 1837 | 1484 | 409 | 1432 | 1175 | 1495 | 596 | 7714 | 6987 | 7885 | | 154 | | .118 | 200 | .422 | 481 | 498 | 226 | 1697 | 1368 | 585 | 1324 | 1082 | 1360 | 573 | 7359 | 6661 | 7523 | | 155 | | .112 | 204 | .475 | 476 | 498 | 238 | 1435 | 1230 | 367 | 1197 | 988 | 1247 | 367 | 6915 | 6283 | 7080 | | 155 | | .110 | 202 | .370 | 487 | 500 | 222 | 1410 | 1155 | 300 | 1121 | 905 | 1164 | 293 | 6546 | 5702 | 8468 | # TABLE I. - CONTINUED. ENGINE PERFORMANCE DATA. | Run | Air | flow, 15/ | em: | Combus - | Combus- | Pue | l flow, li | /br | Rake | Scale | jet thrus | t, Ib | Scale | not thrus | t, 1b | | qat apoeif | ic fuel | Engine | Engine | |--|--|--|---|--|--|--|--|--|---|--------------------------------------|--------------------------------------|--|---|--------------------------------------|--------------------------------------|---|---|---|--|---| | | Actual,
Va | ¥ ₃ -√4 | Cor-
rested, | tion
effi-
oiency,
T _b | parent.
eter,
VaT7 | Actual,
Vr | Adjusted, | W _f | jet
thrust
J,r,
Ib | Actual,
Fj,s | Minsted,
Fj. 5 0a | Cor-
rected,
Fj.s | Actual,
F _{n,s} | Adjusted,
F _{n,s} /5 | Cor-
regted,
n,s | 116 | nsumption,
lb/hr
thrust | | temper-
ature
ratio,
Ty/Ti | ratio,
P ₆ /P ₁ | | | | - O _R | * <u>a</u> √* <u>T,1</u> | . 10 | • • | | ¢ _a √θ _a ∵ | 4,1√ ⁸ T,1 | ŤΒ | | | 5T,1 | | | 8 _{7,1} | Actual,
V _I /F _{0,8} | W _f | Cor-
rected, | , , , | | | | | | | | | | l
 | | | | | | | | | | y _{n,8} √6 | e,, 5 ^{/8} 7,1 | | | | | | | | | | | | 1 | izhaus t | nousle | ares, 2.00 | 4 sq ft | | | | | | | | | | 106
107
108
109
110 | 135.2
131.7
125.5
108.9
68.1 | 138.7
134.7
128.9
111.1
70.4 | 143.9
141.6
134.8
115.0
71,1 | 0.963
,958
,959
,962
,968 | 18.7
17.9
18.0
12.5
7.76 | 6125
5750
4890
3500
2100 | 6347
5941
5076
3631
2197 | 6789
6354
6394
5000
2246 | 6890
6545
6765
4117
1704 | 6941
6584
6830
4151
1721 | 7158
5758
6017
4271
1790 | 7800
7177
8343
4448
1817 | 6941
6584
5850
4161
1791 | 7158
6768
6017
4271
1790 | 7800
7177
6343
4448
1817 | 0.885
,878
.840
.845
1.220 | 0,687
.877
.844
.847
1.225 | 0.895
,885
.852
.855
1.234 | 2,778
2,689
2,519
2,273
2,253 | 1.892
1.942
1.825
1.560
1.210 | | 111
112
113
114
116 | 124.8
122.8
117.7
101.0
63.9 | 123,6
121.3
115.6
99.5
62.7 | 144,1
141.8
135.5
116.2
73.6 | 0,941
.957
.973
.998
1,016 | 16.6
15.9
14.1
10.2
5.09 | 5380
4930
4030
2390
852 | 5559
5089
4119
2445
685 | 8405
5864
4777
2622
1008 | 7992
7615
8728
4668
1677 | 7877
7557
6543
1852 | 7954
7617
6556
1631 | 9232
9857
7642
1791 | 4550
4388
3517 | 4701
4425
3524 | 5450
5145
4108 | 1.157
1.124
1.147 | 1.162
1.148
1.169 | 1,175
1,141
1,163 | 2,650
2,563
2,569
1,968
1,574 | 1.915
1.852
1.689
1.333 | | 116
117
118
119
120 | 82.5
80.8
77.2
86.7
42.3 | 85.0
83.4
79.5
69.4
45,6 | 145.7
141.1
134.7
117.2
73.9 | 0.972
.962
.971
1.006
1.009 | 11.1
10.6
9.25
6.77
3.39 | 3500
3290
2565
1615
579 | 3485
3279
2651
1619
572 | 8290
5913
4790
2914
1035 | 5251
5056
4447
3116
1137 | 5903
4970
4531
 | 5271
5040
4383
 | 9199
8602
7670 | 3045
2857
2320 | 5085
2697
2348 | 5384
5060
4109 | 1.149
1.152
1.149 | 1.129
1.132
1.129 | 1.185
1.169
1.166 | 2.675
2.523
2.579
2.010
1.560 | 1.907
1.845
1.683
1.329
,872 | | 121
129
123
124
125 | 82.9
82.3
78.4
67.7
43.1 | 85.9
84.5
82.1
70.0
44.3 | 142.4
142.2
156.2
117.7
75.8 | 0.984
.990
.981
.982
.995 | 11.5
10.8
9.55
5.71
2.84 | 3550
3510
2770
1573
309 | 3716
3487
2991
1856
320 | 6407
5951
4998
2620
557 | 8169
6981
6379
3871
1441 | 8073
5788
4923
3735
1297 | 6296
8020
5238
3898
1340 | 10642
10204
8719
6592
2310 | 3055
2778
2030
1246 | 3131
2689
2180
1301 | 5355
4496
3595
2199 | 1.179
1.192
1.386
1.282 | 1.167
1.207
1.365
1.275 | 1.197
1,216
1.591
1,262 | 2.743
2.639
2.432
1.972
1.304 | 1.523
1.870
1.715
1.520
.724 | | 126
127
128
129
130 | 54.8
54.1
51.7
60.8
50.6 | 56.9
55.7
55.1
56.1
53.5 | 144.8
142.4
142.5
140.8
138.7 | .954
,954
,954
,961
,987 | 7.52
6.78
9.62
6.59
2.56 | 2590
2200
2300
2095
2100 | 2707
2276
2159
2057
1950 | 8006
6774
6517
6071
5928 | 3698
3366
3517
3120
3133 | 3738
3595
3924
3167
3046 | 3595
3507
3224
3253
3018 | 10587
9659
9001
8962
8471 | 2391
2071
1893
1854
1752 | 2491
9159
1805
1804
1758 | 5858
5898
5285
5256
4872 | 1,062
1,062
1,215
1,150
1,199 | 1.088
1.064
1.141
1.070
1.124 | 1,171
1,148
1,235
1,155
1,217 | 3,092
2,627
2,637
2,610
2,597 | 2.105
1.976
1.901
1.76
1.832 | | 131
132
133
134
135 | 48.7
48.4
80.6
43.4
24.9 | 51.6
51.6
52.3
45.6
26.3 | 135,3
133.5
133.4
117.1
68.1 | ,953
,960
,972
1.008
,868 | 5.88
9.50
5.39
4.41
1,99 | 1758
1718
1573
1059
405 | 1673
1613
1507
1003
379 | 5021
4875
4770
5005
1150 | 2628
2756
2729
2031
676 | 2789
2687
2688
 | 9908
2697
9790

680 | 7795
7538
7877

1907 | 1537
1454
1449
————————————————————————————————— | 1546
1454
1504
49 | 4296.
4084
4138
 | 1,144
1,182
1,065
8,265 | 1.082
1.110
1.068
7.786 | 1,169
1,200
1,155
 | 2.429
2.405
2.409
2.040
1.600 | 1.72
1.863
1.662
1.348
.884 | | 136
137
138
139
140 | 34.8
34.3
33.9
31.8
31.5 | 35.8
34.4
35.0
33.8
32.6 | 145,7
141,2
142,4
139,8
137,4 | 0,958
.988
.891
.973
.979 | 4.83
4.38
42.3
4.42
4.40 | 1656
1432
1330
1437
1420 | 1730
1445
1379
1360
1311 | 6170
6905
6530
6570
6431 | 2362
2165
2113
2077
2040 | 2304
2120
2075
2053
2059 | 2582
2135
2143
2059
2020 | 10439
8445
9413
8204
8152 |
1438
1275
1229
1230
1255 | 1487
1284
1271
1234
1231 | 6518
5660
5561
5514
5578 | 1.159
1.125
1.082
1.188
1.131 | 1,164
1,126
1,085
1,02
1,064 | 1.254
1.216
1.170
1.191
1.162 | 3.153
2.885
2.811
2.785
2.792 | 2.064
1.937
1.925
1.900
1.897 | | 141
142
143
144
145
148 | 31.8
31.3
29.3
51.2
25.7
17.4 | 34.1
53.2
31.8
31.9
27.9 | 140.7
138,4
132.0
131.8
113.9
75.8 | .995
.958
.977
.959
.990
.877 | 4.29
4.19
3.67
3.41
2.69
1.46 | 1335
1356
1097
1004
676
312 | 1285
1260
1067
1029
635
281 | 6168
6137
6130
4965
3109
1405 | 2025
1972
1754
1702
1207
481 | 1985
1855
1883
1887
 | 2023
1855
1722
1726
 | 9005
8351
7725
7710 | 1182
1050
927
926 | 1185
1050
948
945 | 5277
4727
4255
4227 | 1,149
1,274
1,185
1,085 | 1.085
1.200
1.115
1.087 | 1.172
1.298
1.206
1,174 | 2.717
2.678
2.506
2.467
2.092
1.668 | 1.868
1.838
1.710
1.680
1.344 | | 147
148
149
150
151 | 19.1
19.0
18.3
14.0
10.5 | 21.5
20.4
19.1
15.2
11.1 | 142.4
137.7
129.7
104.2
75.8 | 0.955
.919
.920
.866
.895 | 2.75
2.59
2.35
1.51
.96 | 954
882
755
415
232 | 983
848
692
377
217 | 7447
5692
5530
5089
1751 | 1291
1208
1084
654
324 | 1259
1156
1050
343 | 1345
1174
1026
 | 9618
8683
7583
2538 | 763
874
568
 | 814
885
578
 | 5829
5004
4247
607 | 1.250
1.309
1.278
2.829 | 1.183
1,236
1,202
2.656 | 1.277
1.338
1.305
2.886 | 2.901
2.748
2.558
2.050
1.848 | 1.980
1.855
1.710
1.265 | | 152
153
154
155
158 | 14.3
14.1
13.8
13.8
10.5 | 15.7
15.4
14.6
14.2
11.1 | 138.8
133.1
126.9
119.8
98.3 | .935
.916
.935
.929
.572 | 2.15
2.02
1.63
1.65
1.18 | 770
710
800
498
360 | 697
636
518
424
306 | 7775
7010
5735
4520
5486 | 847
797
704
631
365 | 835
802
897
805
385 | 826
794
856
566
364 | 8258
7749
8526
5379
5670 | 530
600
502
388
354 | 823
594
479
363
240 | 5229
5797
4700
3450
2421 | 1.222
1,183
1,185
1,284
1,417 | 1.100
1.072
1.060
1.167
1.273 | 1.248
1.209
1.220
1.311
1.444 | 3.024
2.881
2.659
2.404
2.242 | 1.965
1.870
1.703
1.50
1.352 | TABLE I. - CONTINUED. ENGINE PERFORMANCE DATA. | Run | Approximate | Raymolds | Tail-pipe | Flight | Equivalent ambient air statio temperature, to,,, | Engine-
inlet
total
temperature,
71,
og | Engine-
inlet
total
pressure,
Pl,
lb
aq ft she | Turbine-
inlet
total
temperature,
Tg,
cR | Turbine-
outlet
total
temperature,
Tg,
oR | Turbine- cutlet total pressure, Pg, lb eq ft abe | Tail-pipe total temperature, | | | Tail-
pipe | Eng | , | | |---|-------------|--|--|---|--|--|--|---|--|--|---|---|---|--|--|--|--| | | ft | index,
⁶ T,1 | | Mo | | | | | | | Actual,
T7 | M.Justed,
T ₇ /8 _a | Corrected, | | Actual. | rpa
Adjusted
H/-√G | Corrected,
N/-√ ⁶ T,1 | | | | | | | | | Bot | must-nossle (| urea, 5.686 a | q ft | | | | | | | | | 157
158
159
160
161
162
165 | ٥ | 1.051
.941
.959
.970
1.000
.992
.985 | 2053
2054
2060
2067
2057
2057
2051 | 0000000 | 512
511
509
508
502
504
506 | 503
503
501
501
500
502
504 | 1935
1937
1957
1957
1975
2024
2025
2037 | 1575
1525
1427
1260
1225
1225
1265 | 1195
1145
1052
959
1016
1019
1128 | 3171
2969
2826
2514
2239
2235
2150 | 1174
1139
1064
945
999
998
1114 | 1190
1157
1095
956
1033
1026
1145 | 1212
1175
1102
979
1037
1052
1167 | 2988
2750
2664
2447
2221
2215
2140 | 7949
7778
7411
6657
5489
5492
4593 | 8005
7840
7485
6740
5582
5574
4657 | 8074
7800
7543
8788
5592
5584
4661 | | 164
165
165
187
168
169 | 15,000 | 0.889
.899
.892
.920
.860
.911 | 1191
1190
1178
1266
1201
1193 | 0.795
.795
.812
.786
.782
.798 | 442
441
442
450
451
438 | 497
497
500
505
507
494 | 1802
1804
1816
1885
1615
1615 | 1550
1500
1585
1385
1170
863 | 1171
1130
1031
1030
851
641 | 2821
2755
2544
2581
1942
1432 | 1158
1120
1026
1025
853
849 | 1218
1160
1079
1059
879
689 | 1209
1169
1065
1054
873
682 | 2418
2360
2178
2213
1766
1392 | 7926
7790
7424
7411
6701
6504 | 8132
8000
7617
7550
6802
5669 | 8099
7980
7564
7513
8780
5642 | | 170
171
172
173
173 | 25,000 | 0.653
.647
.635
.607
.502 | 794
788
786
786
786
798 | 0.805
.802
.800
.600 | 415
416
421
453
440 | 468
469
475
488
496 | 1213
1205
1189
1197
1215 | 1567
1503
1373
1153
967 | 1181
1153
1026
849
867 | 1937
1904
1725
1349
908 | 11.67
11.29
10.22
852
873 | 1208
1160
1043
846
658 | 1294
1242
1117
906
704 | 1894
1634
1478
1221
891 | 7926
7797
7407
8853
5328 | 8089
7930
7481
6630
5267 | 8547
8202
7742
6861
5450 | | 175
176
177
178 | 35,000 | 0.594
.585
.579
.429 | 494
483
492
487 | 1.239
1.239
1.223
.807 | 363
384
389
395 | 499
502
506
446 | 1208
1205
1201
747 | 1150
1158
875
1685 | 3208
850
826
3208 | 1314
1283
879
1274 | 856
853
840
1193 | 851
875
548
1190 | 890
882
657
1369 | 1120
1091
790
1093 | 6687
8653
5843
7956 | 6781
6738
5878
7846 | \$819
6765
5918
8683 | | 178
180
181
182 | | .451
.452
.457
.454 | 491
492
489
491 | .804
.804
.812
.804 | 395
396
390
391 | 448
448
442
442 | 751
753
754
751 | 1520
1365
1177
630 | 1152
1036
864
612 | 1256
1141
947
621 | 1159
1051
866
621 | 1156
1028
875
626 | 1326
1200
1017
729 | 1062
979
821
599 | 7795
7420
8686
5492 | 7785
7410
8719
5814 | 8409
8004
7245
5951 | | 185
184
186
186
187
188 | 45,000 | 0.258
.279
.278
.278
.286
.288 | 293
382
333
333
504
291 | 0.821
.760
.777
.761
.602
.830 | 396
405
405
405
394
386 | 449
456
454
454
454
445
439 | 456
498
496
498
464
467 | | 1216
1217
1171
1062
877
641 | 774
814
784
735
876
401 | 1201
1202
1154
1055
879
450 | 1192
1163
1122
1023
877
862 | 1384
1371
1393
1206
1025
784 | 884
704
877
835
506
386 | 7956
7958
7778
7384
6685
5598 | 7925
7850
7650
7274
6676
8448 | 8554
8499
8314
7895
7219
6087 | | 189
190
191
192
193 | 55,000 | 0.180
.189
.169
.189 | 254
249
250
255
249 | 0.705
,719
,719
.883
,719 | 705
726
720
706
722 | 488
459
470
472
478 | 354
351
349
352
348 | | 1293
1230
1121
905
793 | 844
526
482
405
453 | 1275
1212
1109
903
797 | 1174
1121
1020
823
730 | 1411
1342
1224
993
877 | 477
461
423
572
411 | 7938
7786
7386
8670
6252 | 7644
7487
7086
6389
5984 | 8380
8191
7762
6995
6556 | | 194
195
196
197 | _ | .158
.155
.153
.192 | 259
254
254
253 | .399
.388
.377
.561 | 417
404
405
396 | 467
455
454
463 | 289
282
280
280 | | 1353
1282
1096
929 | 425
401
352
316 | 1329
1214
1086
924 | 1153
1058
946
806 | 1476
1354
1213
1120 | 583
587
333
505 | 8004
7640
7197
8506 | 7457
7152
5718
6060 | 8440
8071
7612
6888 | TABLE I. - CONTINUED. ENGINE PERFORMANCE DATA. (a) Concluded. Inlet guide vanes open. | Run | Actual, Adjusted, Cor- | | Cor-
rected, | Combus-
tion
effi-
ciency, | tion
param-
eter, | Actual, | 1 flow, 1b
Adjusted,
Wr | Corrected, | Rake
jet
thrust
Fj.r, | Actual, | Adjusted,
Fj,s/5a | Cor-
rected. | Actual,
Pn,s | Adjusted,
Pn,s/8a | Cor- | d 4 4-16-11-1- | | | ature
ratio, |
Engine
pressure
ratio,
Pa/P1 | |---|--|--|--|---|--|--|--|--|---|---|---|---|---|---|---|--|--|--|---|---| | | | 8 | $\frac{b_{\mathbf{a}}\sqrt{b_{\mathbf{T},1}}}{b_{\mathbf{T},1}}$ | n _b | WaT7 | • | $\delta_{\mathbf{a}}\sqrt{\theta_{\mathbf{a}}}$ | $\delta_{\mathrm{T},1}\sqrt{\delta_{\mathrm{T},1}}$ | 1b |],- | ,,,,,, | b _{T,1} |], <u>.</u> | .,,,,,, | Fn.s | Actual,
Wr/Fn,s | Wr | Cor-
rected,
Vf | T7/T1 | 6.1 | | | | <u></u> | | | | | | | | | | | l | | | | $r_{n,s} \sqrt{\theta_n}$ | θ _{n,s} √θ _{T,1} | | | | | | | | | | | | | Exhaust- | nozzle | area, 3.68 | 8 sq ft | | | | | | | | | | 157
158
159
160
161
162
163 | 133.8
131.7
127.4
110.4
70.7
71.5
48.2 | 157.0
154.6
129.4
112.5
71.5
72.5
49.1 | 144.2
141.6
135.5
116.1
72.5
73.5
49.4 | 0.989
,988
,988
,967
,983
,979 | 15.7
15.0
13.8
10.4
7.06
7.14
5.37 | 4430
4070
3440
2440
1715
1715
1462 | 4599
4226
3565
2538
1795
1791
1630 | 4927
4514
3785
2660
1826
1822
1542 | 5030
4326
3789
2563
1131
1123
604 | 4498
4213
3694
2554
1125
1114
588 | 4637
4339
5789
2628
1158
1146
807 | 4925
4801
5992
2735
1176
1164
611 | 4498
4213
3694
2554
1125
1114
588 | 4637
4339
3789
2628
1158
1146
607 | 4925
4601
3992
2735
1176
1184
611 | 0.985
.966
.932
.958
1.525
1.540
2.490 | 0.993
.974
.941
.968
1.550
1.547
2.520 | 1.001
.982
.948
.974
1.554
1.860
2.525 | 2.334
2.287
2.124
1.886
1.998
1.988
2.210 | 1.640
1.633
1.444
1.273
1.104
1.103
1.057 | | 164
165
166
167
168
169 | 126.2
124.3
119.6
122.7
102.4
73.9 | 123.3
121.4
118.1
114.8
100.2
71.7 | 145.0
142.7
136.7
136.0
118.0
84.1 | 0,981
.965
.966
.995
1.001
1.000 | 14.6
13.9
12.3
12.6
8.73
4.79 | 4110
3840
3080
3040
1686
545 | 4225
3956
3201
2936
1680
561 | 4931
4603
3656
3461
1965
651 | 6329
6033
5287
5221
3284
1336 | 5939
5742
4877
4925
3015
1227 | 5951
5759
4940
4882
2995
1227 | 6972
6735
5682
5531
3618
1431 | 2733
2579
1765
1810
393 | 2738
2587
1788
1721
390 | 5209
5025
2056
2033
458 | 1.504
1.489
1.745
1.680
4.239 | 1.545
1.529
1.790
1.707
4.305 | 1.537
1.522
1.778
1.708
4.289 | 2,330
2,254
2,052
2,030
1,682
1,314 | 1.565
1.526
1.401
1.369
1.070 | | 170
171
172
173
174 | 89.0
86.2
83.0
70.7
42.2 | 86.4
84.4
02.1
70.9
42.1 | 147.4
144.2
140.3
121.2
72.0 | 0.998
.974
.964
.977
.955 | 10.4
9.88
8.49
8.03
2.84 | 5000
2780
2240
1238
363 | 3018
2816
2260
1232
354 | 5515
5144
4137
2257
648 | 4628
4311
3708
2433
665 | 4401
4117
3491
2227
625 | 4351
4101
3486
2224
516 | 7680
7242
6165
3937
1990 | 2184
1969
1414
434 | 2159
1962
1412
433 | 3811
3453
2497
767 | 1.374
1.412
1.584
2.853 | 1.399
1.438
1.600
2.843 | 1,447
1,485
1,656
2,942 | 2.494
2.592
2.182
1.746
1.367 | 1.627
1.583
1.438
1.127
.7486 | | 175
176
177
178 | 68.8
67.5
52.4
55.7 | 70.7
70.1
53.9
57.1 | 118.2
118.5
91.2
146.3 | 1.032
.994
.913
.990 | 5.89
5.75
3.35
6.85 | 1110
1121
354
2030 | 1173
1196
389
2074 | 1983
2002
632
8204 | 3203
3111
1646
3018 | 2960
2893
1413
2904 | 3084
3046
1462
2975 | 5186
5080
2490
8238 | 433
400
1547 | 451
421
1583 | 759
702

4303 | 2.564
2.803
1.312 | 2.600
2.839
1.310 | | 1.715
1.699
1.268
2.675 | 1.088
1.065
.732
1.705 | | 179
180
181
182 | 55.5
54.3
49.7
35.0 | 56.4
55.1
50.3
35.3 | 145.0
141.6
128.7
90.9 | .982
.991
1.004
.958 | 6.32
5.60
4.30
2.17 | 1870
1552
980
504 | 1894
1548
1003
513 | 8685
4644
2980
938 | 2674
2536
1860
699 | 2745
2433
1751
686 | 2784
2462
1783
898 | 7738
6837
4913
1933 | 1395
1110
537 | 1415
1123
847 | 3931
3119
1507 | 1.341
1.380
1.825 | 1.339
1.378
1.634 | 1,447
1,489
1,978 | 2.554
2.312
1.959
1.405 | 1.648
1,515
1.256
.827 | | 183
184
185
186
187
188 | | | | | | 1270

- 650
252 | 1350

658
269 | 5356

3201
1257 | | 1756
1760
1709
1501
1051
469 | 1875
1633
1501
1380
1065
517 | 8143
7500
7291
6378
4793
2264 | 916
920
983
669
343 | 963
854
798
618
348 | 4250
3930
3684
2843
1864 | 1.895 | 1.895 | 2,048 | 2.675
2.65
2.55
2.33
1.975
1.481 | 1.641
1.581
1.478
1.241
.878 | | 189
190
191
192
195 | | | | | | | | | | 1069
1059
 | 824
812
476 | 6567
6377
5827 | 582
548
223 | 448
420
167 | 3482
3500
1542 | | | | 2.72
2.59
2.57
1.92
1.70 | 1.538
1.497
1.578
1.152
1.300 | | 194
195
196
197 | | | | | | | | | ***** | 706
611
493 | 821
459
371 | 5169
4591
3723 | 458
393
290 | 413
359
284 | 3352
2953
740 | | | | 2.65
2.61
2.35
2.01 | 1.471
1.424
1.292
1.130 | TABLE I. - CONTINUED. ENGINE PERFORMANCE DATA. ## (b) Inlet guide vanes closed. | Run | Approximate altitude, | Heynolds
mumber | atatic | Mach | Equiv-
alent | Engine-
inlet | Engine-
inlet | Turbine-
inlet | furbine-
outlet | Turbine-
outlet | Tail-pi | pe tgtal t | Tail-
pipe | Engine speed,
rpm | | | | |----------------------------------|-----------------------|--|--|---|--|--|--|---|---|---|---|--|--|--|--|--|--| | | ft | index,
B _T ,1
•√ ⁶ T,1 | pressure,
Po'
15
Eq ft abs | number,
Ko | ambient
air
static
temper-
ature,
to,e, | total temperature, T ₁ , o _R | total pressure, P1: 1b aq ft abs | total
tamperature,
T5,
OR | total
temperature,
T ₆ ,
O _R | total
pressure,
P ₆ ,
1b
ad It abs | Actual,
T ₇ | Adjusted, T_7/θ_a | Corrected, | total
pressure,
P ₇ ,
1b | Actual, | Adjusted,
N/-√8_ | Corrected,
W/-/6 _{7,1} | | | | | | | | | L xh | wust-nozzle 4 | rea, 2,388 s | q ft | | | | | | | | | 1
2
5
4
5 | 0 | 0.960
.848
.949
.960
.951 | 2048
2038
2043
2038
2034 | 0000 | 521
521
522
521
520 | 517
518
520
520
519 | 1997
2000
2020
2026
2027 | 1507
1340
1240
1265
1253 | 1252
1114
1102
1151
1184 | 2972
2632
2580
2912
2161 | 1246
1108
1070
1135
1170 | 1241
1104
1084
1131
1168 | 1251
1110
1068
1133
1170 | 2899
2568
2357
2202
2153 | 7091
6019
5015
4061
3604 | 7078
6008
5000
4073
5600 | 7104
6025
5010
4077
3604 | | 6
7
8 | 15,000 | 0.861
.861
.860 | 1184
1165
1163 | 0.821
,813
,819 | 449
450
450 | 509
509
510 | 1811
1800
1789 | 1347
1205
967 | 1054
938
785 | 2285
2048
1635 | 1056
936
769 | 1094
969
794 | 1077
957
785 | 2228
2000
1597 | 7083
6838
5502 | 7210
6843
5590 | 7152
6802
5550 | | 10
11
12 | 35,000 | 0,562
.558
.562
.360 | 500
485
485
497 | 0.796
.794
.803
.797 | 458
485
455
485 | 514
512
514
515 | 759
750
787
755 | 1400
1245
1107
890 | 1096
978
878
786 | 984
865
789
889 | 1102
972
873
795 | 952
842
758
887 | 1113
986
882
905 |
958
845
752
673 | 7087
6540
5985
5447 | 5587
6065
5889
5088 | 7121
6585
6014
5479 | | | | | | | | | Bal | eust-noxule a | rea, 2,514 s | qft | | | | | | | | | 15
14
15
16
17 | ū. | 0.946
.950
.952
.953 | 2056
2059
2061
2068
2061 | 00000 | 521
521
521
521
521
519 | 517
517
517
517
517 | 1985
2000
2006
2008
2027 | 1767
1727
1620
1450
1250 | 1452
1387
1303
1182
1105 | 5162
5136
5045
2840
2588 | 1421
1385
1304
1185
1078 | 1416
1378
1299
1160
1078 | 1427
1389
1309
1190
1062 | 3088
3058
2968
2788
2371 | 7945
7782
7415
6670
5032 | 7930
7767
7401
8857
6032 | 7980
7797
7429
8683
5042 | | 16
15
20
21
22 | 38,000 | 0.400
.399
.398
.387
.375 | 491
494
494
496
488 | 0.802
.802
.800
.800
.798 | 418
420
423
429
439 | 472
474
477
484
485 | 750
754
735
756
767 | 1615
2550
1430
1243
917 | 1260
1230
1122
978
739 | 1104
1079
1010
914
651 | 1265
1261
1122
972
742 | 1192
1145
1045
893
666 | 1392
1337
1221
1042
778 | 1073
1060
964
894
838 | 7945
7797
7415
6788
5146 | 7714
7652
7156
8484
4875 | 6832
8168
7734
6974
5269 | | | | | | | | | Bath | must-nossle a | Fmm, 2,694 m | ı ft | • | | | | | | | | 25
24
25
26
27 | 38,000 | 0.432
.432
.432
.432
.419 | 489
499
485
489
481 | 0.808
.795
.795
.790
.804 | 394
386
396
396
396
386 | 448
448
446
448
447 | 761
785
751
755
756 | 1515
1450
1354
1147
910 | 1182
1129
1027
872
704 | 1045
1007
985
882
708 | 1170
1119
1025
876
711 | 1168
1113
1020
870
708 | 1562
1303
1195
1020
625 | 1012
973
934
839
690 | 7949
7780
7409
6670
5582 | 7943
7758
7391
6649
5619 | 81/75
8593
7992
7195
5961 | | | , | | | | | | Exh | must-nourle s | rea, 3.688 60 | ft | | | | | | | | | 28
29
30
31
32 | 0 | 0.954
.960
.959
.984
.972 | 2075
2080
9074
2077
2070 | 0000 | 522
521
520
518
516 | 518
517
516
515
514 | 2021
2027
2022
2030
2039 | 1455
1420
1340
1240
1150 | 1158
1106
1049
860
951 | 2475
2454
2418
2367
2260 | 1120
1069
1055
968
941 | 1114
1065
1038
970
947 | 1129
1093
1041
978
950 | 2409
2398
2370
252P
2233 | 7943
7777
4403
6663
5723 | 7920
7782
7396
8670
5740 | 7951
7792
7425
6869
5751 | | 33
34
35
36
37
38 | 35,000 | 0.407
,599
,418
,408
,408
,407 | 487
492
483
491
494
489 | 0.809
.815
.815
.812
.808
.813 | 412
415
403
413
414
419 | 455
470
457
467
468
487 | 749
745
747
757
759
755 | 1353
1280
1180
970
970
867 | 990
944
850
711
709
641 | 796
771
742
657
658
607 | 986
943
850
717
715
649 | 943
895
831
864
680
691 | 1098
1041
968
797
793
721 | 723
704
585
827
630
567 | 7964
7793
7424
6598
8634
5957 | 7788
7593
7541
8444
8375
5806 | 8404
8189
7912
6955
6961
6258 | ## TABLE I. - CONCLUDED. ENGINE PERFORMANCE DATA. (b) Concluded. Inlet guide vanes closed. | Run | Air | flow, 1b/ | Bec | Combus- | Combus- | Fue | l flow, lb | /hr | Rake | Scale | Jet thrus | t, 1b | Scale | net thrus | t, 1b | | ust specif | ic fuel | Engine | Engine | |----------------------------------|--|---|---|--|--|--|--|---|---|---|---|--|-----------------------------------|----------------------------------|--------------------------------------|--|---|--|--|--| | | Actual,
W _a | Ad justed, $\frac{V_{a}-\sqrt{\theta_{a}}}{\delta_{a}}$ | Corrected, $W_{a} \sqrt{\theta_{T,3}}$ | tion
effi-
ciency,
n | tion
param-
eter,
W T | Actual, | Wg | Corrected, Wr ST,1VBT,1 | jet
thrust,
Fj,r'
lb | Actual,
Fj,s | Adjusted,
Pj,s/0a | Cor-
rected,
Fj.s
T,1 | Actual,
P _{n,s} | Adjusted,
Fn,s/6a | Cor-
rected,
pn,s
or,1 | TE | hasumption,
1b/hr
thrust
Adjusted,
W _f
F _{n,s} $\sqrt{\theta_a}$ | Cor-
rected,
Wr
Fn,s T,1 | temper-
ature
ratio,
T ₇ /T ₁ | pressure
ratio,
P ₆ /P ₁ | | 一 | <u>. </u> | l | L | l | <u> </u> | L | <u> </u> | <u> </u> | Exheust- | nozzle a | rea, 2.386 | sq ft | <u> </u> | <u> </u> | l | L | <u></u> | u,p 1,2 | i | | | 1 2 3 4 5 | 91.7
77.4
59.5
40.3
33.5 | 94.9
80.5
81.8
42.0
34.9 | 97.0
81.8
62.4
42.1
35.0 | 0.980
.960
1.012
.930
.916 | 11.4
0.58
6.36
4.58
3.92 | 3300
2260
1534
1280
1150 | 3402
2341
1585
1326
1195 | 3504
2394
1606
1334
1201 | 3542
2348
1381
708
514 | 3463
2317
1337
645
483 | 3577
2405
1385
670
502 | 3671
2451
1401
673
504 | | | | | | | 2.410
2.139
2.058
2.183
2.254 | 1.488
1.316
1.178
1.091
1.066 | | 6
7
8 | 84.9
78.7
84,2 | 85.5
79.2
65.4 | 98.3
91.7
75.3 | 0.980
.956
.960 | 8.96
7.38
4.91 | 2270
1660
800 | 2368
1725
842 | 2677
1971
954.7 | 5902
3124
1814 | 3743
3055
1718 | 3837
3125
1778 | 4372
3593
2032 | 1493
986
21 | 1530
1009
22 | 1744
1160
25 | 1,213
1,684
38,09 | 1.235
1.711
38.70 | 1,225
1,700
38,42 | 2.075
1.843
1.508 | 1.262
1.135
0.914 | | 9
10
11
12 | 35.3
33.2
29.8
25.5 | 37.8
35.8
32.2
27.4 | 97,8
92.9
82.8
71.0 | 0,964
.961
1,008
.933 | 3,88
3,22
2,60
2,02 | 1022
750
498
360 | 946
702
466
336 | 2863
2130
1399
1015 | 1659
1363
1036
732 | 1847
1307
995
882 | 1640
1315
1001
883 | 4592
5687
2781
1912 | 754
451
218
22 | 731
454
219
22 | 2046
1272
609
62 | 1.392
1.663
2.284
18.36 | 1.294
1.547
2,125
15,22 | 1.399
1.674
2.295
15.46 | 2,144
1,898
1,698
1,546 | 1.295
1.155
1.016
0.913 | | | | | | | | | | | Exhaust- | ozzle a | rea, 2.514 | sq ft | | | | | | | | | | 13
14
15
16
17 | 94.8
94.3
93.2
87.5
57.5 | 97.8
97.2
95.9
90.1
59.3 | 100.4
99.6
98.2
92.1
59.9 | 0,974
.978
.986
.994
1.048 | 13.5
13.1
12.2
10.4
6.20 | 4350
4100
3620
2830
1470 | 4452
4207
3711
2903
1517 | 4502
4347
5827
2959
1538 | 4090
3960
3654
2986
1308 | 4158
4057
3728
3033
1371 | 4283
4171
3629
3118
1415 | 4412
4292
5933
3197
1431 | | | | | | | 2.749
2.675
2.522
2.292
2.085 | 1.585
1.568
1.519
1.414
1.178 | | 18
19
20
21
22 | 38.4
38.5
37.1
35.6
24.0 | 40.1
40.0
38.7
37.3
25.4 | 105.4
103.2
99.9
96.2
65.6 | 0.980
.993
.975
.987
.864 | 4.86
4.70
4.18
5.46
1.78 | 1514
1405
1171
857
322 | 1490
1572
1139
805
305 | 4477
4125
3432
2426
921.6 | 2115
2041
1809
1501
585 | 2065
1761
1747
1463
583 | 2094
1775
1761
1469
583 | 5525
4941
4909
4095
1629 | 1106
801
817
+564
-29 | 1120
807
824
566
-29 | 3117
2248
2296
+1579
-81 | 1.370
1.754
1.453
+1.484
-11.0 | 1.330
1.699
1.383
1.422
10.52 | 1.437
1.835
1.495
+1.537
41.37 | 2.576
2.576
2.352
2.006
1,499 | 1,472
1,451
1,341
1,209
,860 | | | | | | | | | | | Exhaust-r | ozzle a | Pas, 2.894 | eq ft | | | | L | | | | | | 23
24
25
26
27 | 39.5
39.0
40.2
37.0
30.7 | 40.3
39.1
40.5
37.0
31.8 | 103.2
101.4
105.0
96.3
81.8 | 0.977
.965
.979
.992
.948 | 4.62
4.37
4.12
3.24
2.18 | 1410
1310
1132
750
402 | 1434
1503
1136
747
415 | 4286
3961
3441
2273
1245 | | 1773
1733
1732
1732
1387
847 | 1805
1730
1742
1384
877 | 4996
4858
4881
3897
2435 | 807
795
783
500
99 | 822
793
768
499
102 | 2274
2228
2150
1405
285 | 1.747
1.648
1.484
1.500
4.061 | 1.746
1.645
1.480
1.495
4.052 | 1,885
1,778
1.601
1,618
4,376 | 2.623
2.509
2.298
1.964
1.591 | 1.391
1,334
1.285
1.145
,9592 | | | | | | | | | | 1 | Exhaust-r | ozzle ar | ***, 3.688 | aq ft | | | | | | | | | | 28
29
30
31
32 | 96.4
98.0
96.2
90.2
75.3 | 100.7
99.9
98.2
91.8
76.7 |
102.9
108.1
100.3
93.6
77.8 | 1,002
,986
,995
,977
,983 | 11.0
10.7
9.95
8.73
7.09 | 2840
2700
2380
1990
1533 | 2891
2741
2425
2030
1571 | 2976
2824
2497
2082
1599 | 2519
2219
2058
1705
1161 | 2321
2234
2079
1714
1147 | 2370
2272
2121
1747
1172 | 2430
2332
2175
1786
1191 | | | | | | | 2.162
2.106
2.006
1.880
1.831 | 1.225
1.211
1.196
1.161
1.108 | | 53
54
55
56
37
38 | 39,3
39,0
39.0
36.2
36.3
35.4 | 41.1
41.3
40.6
57.8
37.5
34.8 | 105.1
105.3
103.6
98.1
96.1
88.8 | 0,979
.985
.966
.922
.969 | 3.87
3.67
3.31
2.60
2.60
2.17 | 990
888
745
452
430
303 | 990
894
759
448
423
302 | 2951
2650
2249
1332
1262
895 | 1384
1315
1200
862.0
859.4
654.8 | 1294
1229
1133
806
824
654 | 1324
1270
1168
817
831
666 | 3656
3490
3210
2253
2297
1633 | 312
244
161 | 519
252
166 | 881
693
456 | 3.173
3.639
4.627 | 3,103
3,546
4,575 | 3.348
3.824
4.931 | 2.118
2.008
1.860
1.535
1.528
1.390 | 1.063
1.035
.9933
.8679
.8682
.8040 | | Run | Approximate | Reynolds | Tail-pipe | Mach | Equiv- | Engine-
inlet | Engine-
inlet | Turbine-
inlet | Turbing-
outlet | Turbine- | 7a11 -p1 | pe total t | esperature, | Tail-
pipe | Eng | rpm | ι, | |----------------|-------------|----------------------|-------------------|----------------------|-----------------------------|-----------------------|-------------------|-----------------------|-----------------------|------------------------|----------------------|-----------------------|----------------------------------|----------------------|----------------------|----------------------|-----------------------| | | ft | index, | pressure, | number, | ambient | total
temperature, | pressure, | total
temperature, | total
temperature, | total | Actual, | Adjusted, | Corrected, | pressure, | Actual, | Adjusted, | Corrected, | | | 1 | √9 <u>T,1</u> | aq ft Aba | 1 | static
temper-
ature, | or, | P ₁ , | TS, | o _R , | Ps,
lb
sq ft abs | ., | 17/02 | τ ₇ /θ _{τ,1} | P7, | " . | 775 | 7,1 | | | | | 1 | 1 | co.e. | | sq It abs | | | ad to mos | 1 | | | eq It abs | 1 | | ł | | - | | | <u> </u> | L | 1 | L | Ext | Must-nozsle | res, 2.388 m | d tr | L | L | L | l | <u></u> | 1 | <u> </u> | | 1 | 35,000 | 0.470 | 47B
478 | 0.821 | 358
346 | 406
415 | 739
742 | 2010
2018 | 1810
1612 | 2046
2009 | 1615
1617 | 1778
1742 | 2064
2025 | 1991
1965 | 7975
7958 | 8386
8260 | 9016 | | 3 | 1 | .453
.480 | 484
481 | ,815
,819 | 383
363 | 434
412 | 747
747 | 1987 | 1621
1533 | 1947 | 1600 | 1646 | 1814 | 1909 | 7943
7763 | 8054 | 8687
8713 | | 5 | | .442 | 461 | .820 | 385 | 437 | 748 | 1915 | 1547 | 1880 | 1529 | 1584 | 1815 | 1837 | 7748 | 7855 | 8141 | | 6 | | .489
.436 | 485
482
483 | .015
.015 | 360
368
367 | 408
440
406 | 749
745
754 | 1800 | 1468
1449
1398 | 1754
1845 | 1437 | 1459 | 1694
1789 | 1716
1796 | 7589
7424
7383 | 7936
7476
7759 | 8580
8063
8324 | | 8
9
10 | ŀ | . 488
. 488 | 480
480 | .694
.617
.799 | 367
368
390 | 410
440 | 744
749 | 1753
1617
1455 | 1265
1265 | 1646
1556 | 1265
1154 | 1398 | 1827
1861 | 1626 | 5992
6547 | 7293
6580 | 7887
7110 | | ii | | .418 | 478 | 809 | 399 | 461 | 738 | 1063 | 856 | 736 | 871 | 860 | 1003 | 719 | 5267 | 5234 | 5650 | | 12
13 | 45,000 | 0.340 | 291
298 | 0,826 | 328
324 | 375
367 | 455
461 | 2007
1920 | 1618
1548 | 1329 | 1607
1540 | 1925
18 6 8 | 2235
2178 | 1296
1269 | 7941
7773 | 8695
8558 | 9387
9244 | | 14
15 | | .334
.338
.341 | 303
293 | .803 | 252
252 | 364
368 | 463
452
456 | 1837
1737 | 1472
1384
1262 | 1282
1186 | 1385 | 1789
1878
1508 | 2091
1954 | 1234
1158
1078 | 7589
7562
8998 | 8386
8098 | 90 6 3
8742 | | 16 | · | .267 | 298 | ,804
,797 | 391 | 373
441 | 450 | 1887
2017 | 1693 | 1108 | 1621 | 1629 | 1761 | 1183 | 7947 | 7835
7963 | 8254 | | 18 | | .261 | 267 | .822 | 389
388 | 442
439 | 460 | 1975
1780 | 1606
1438 | 1165
1056 | 1580 | 1596
1440 | 1885
1881 | 1139 | 7835
7365 | 7874
7409 | 8490 | | 20
21 | | .274 | 311
308 | .792
.793 | 393
396 | 442
448 | 470
486 | 1497
1070 | 1192
659 | 837
422 | 1189
872 | 1189 | 1396
1015 | 817
418 | 6619
5038 | 6619
5019 | 7173
5438 | | 22 | 55,000 | 0.206 | 181 | 0.829 | 357
358 | 383
384 | 264
263 | 2037
1890 | 1651
1539 | 814
769 | 1640
1520 | 1912
1768 | 2222
2064 | 791
752 | 7877
7508 | 8507
8201 | 9169
8844 | | 23
24
25 | | .215 | 194
190 | .794 | 340
339 | 383
383 | 294
291 | 1797
1620 | 1480
1310 | 737
681 | 1437
1294 | 1561 | 1947
1753 | 720
665 | 7405
6935 | 7960
7469 | 8619 | | 26 | 1 | .163 | 175 | .841 | 387 | 442 | 278 | 2067 | 1690 | 788 | 1660 | 1687 | 1949 | 722 | 7990 | 8054 | 6658 | | 27
28 | ļ | .166
.156 | 177 | .837
.832 | 389
394 | 444 | 280 | 1975
1833 | 1606
1484 | 715
652 | 1584
1486 | 1600
1462 | 1852
1898 | 695
636 | 7748
7358 | 7787
7348 | 8577
7919 | | 29
30
31 | | .160
.161 | 188
194
197 | .802
.784
.409 | 413
411
570 | 484
461
382 | 264
291
221 | 1510
1227
1990 | 1218
978
1863 | 485
286
579 | 1209
998
1597 | 1156
976
1696 | 1355
1124
2170 | 470
280
563 | 5502
7661 | 6397
3060
7888 | 5919
5838
8918 | | 32 | i | .158 | 159 | 417 | 369 | 382 | 218 | 1797 | 1486 | 543 | 1438 | 1531 | 1954 | 527 | 7256 | 7450 | 8458 | | 35
34 | | .160 | 197 | 409 | 370
425 | 382
441 | 219
221 | 1737
2037 | 1372
1886 | 518
545 | 1358 | 1442 | 1848
1929 | 504
531 | 7814 | 7205
7514 | 8143
8477 | | 36
36 |] | ,127
,135 | 188 | .468
.459 | 429 | 442
445 | 218
226
223 | 1883
1850 | 1544
1274 | 504
398
247 | 1512
1257 | 1401
1182
1186 | 1775
1488 | 490
387
243 | 7456
6836
5483 | 7158
6256
5201 | 8067
7058
5469 | | 37 | · | ,127 | 196 | .434 | 482 | 448 | | 1510 aust-nossle a | 1251
rea, 2,514 se | | 1273 | 1140 | 1474 | 1 200 | 0400 | 3841 | 10443 | | 38 | 55,000 | 0.180 | 185 | 0.800 | 369 | 416 | 282 | 1697 | 1487 | 707 | 1502 | 1600 | 1874 | 684 | 7024 | 8178 | 8851 | | 40
41 | | .177
.178
.178 | 179
183
184 | .808
.808 | 366
367
368 | 415
415
415 | 279
281
281 | 1860
1897
1385 | 1460
1326
1111 | 677
542
510 | 1469
1332
1082 | 1578
1430
1136 | 1636
1670
1354 | 517
490 | 7835
7403
6849 | 8117
7662
6765 | 8742
6279
7324 | | 42 | | .178 | 163 | .804 | 367 | 414 | 280 | 1140 | 904 | 371 | 885 | 948 | 1116 | 359 | 5752 | 5953 | 6440 | | 43 | | .184 | 190
184 | .792 | 419 | 471 | 287
283 | 1980 | 1586
1572 | 484
459 | 1585 | 1485 | 3.361 | 664
639 | 7930
7756 | 7680 | 8325 | | 43
46 | | .168 | 201
197 | .736
.788 | 402
406 | 448
454 | 288
291 | 1757
1500 | 1419
1191 | 589
489 | 1386
1191 | 1385
1153 | 3.108
2. 62 3 | 571
474 | 7373
6536 | 7290
6529 | 7954
7095 | | 47 | | .141 | 198 | .415
.431 | 399
398 | 413
413 | 223
225 | 1953
1867 | 1554
1517 | 532 | 1548
1482 | 1525
1463 | 1946
1863 | 507 | 7964
7765 | 7904
7716 | 8927
8704 | | 42 | | .140 | 193 | .444
.450 | 397
397 | 413
415 | 221
216 | 1740
1523 | 1394
1230 | \$05
440 | 1379
1211 | 1365 | 1733
1522 | 424 | 7420
6721 | 7382
4687 | 8317
7534 | | 50
51 | L | .134 | 186 | .453 | 399 | 415 | 214
Exh | 1297 | 1041
res, 2.594 sc | 339 | 1009 | 1014 | 1287 | 527 | 5953 | 5906 | 4657 | | 52 | 55,000 | .180 | 174 | .843 | 355 | 405 | 277 | 1817 | 1403 | 676 | 1422 | 1674 | 1823 | 651 | 7952 | 8366 | 9003 | | 33
54
58 | | .179
.180
.172 | 175
180 | .434 | 356
361 | 406
410 | 277
281 | 1737
1879 | 1330
1228 | \$46
591 | 1357
1229 | 1498
1388 | 1734
1586 | 622
564
457 | 7780
7369 | 8177
7695 | 8796
8291 | | 55 | | .172
.170 | 175
180
196 | .831
.810 | 364
376
302 | 414
425
406 | 272
277
282 | 1337
996
1825 | 1064
795
1426 | 487
216
802 | 1038
779
1428 | 1119
814
1432 | 1299
951
1631 | 207
480 | 8585
5388
7924 | 8842
8507
7932 | 7373
6954
8971 | | 3, | | -143 | L 4 | | | 1 100 | EKE | 1459 | 1929 | 0VE | 1450 | 1444 | 7441 | | 1444 | 1932 | 125.7 | TABLE II. - ENGINE PERFORMANCE DATA OBTAINED AFTER ENGINE OVERHAUL. TABLE II. - CONCLUDED. ENGINE PERFORMANCE DATA OBTAINED AFTER ENGINE OVERHAUL. | Trans. | Ale | Air flow, 1b/men Comban-Comban- Fuel flow, 1b/hr | | | | | | | Rake | | | | Soule | net Chrus | t, 16 | Wet thrust ppecific fuel | | | Hay in- | Fraging | |----------------|----------------|--|---|----------------|--------------|--------------|-----------------------------|-------------------------|--------------|--------------|--------------|------------------------|--------------|-----------------------------------|----------------------|--|-------------------------|----------------|------------------------|--------------------------------| | | Artes1. | Adjusted, | Cor- effi- param Actual, Adjusted, Corre | | |
Corrected, | jet
threat | Actual, | 44.justed | Cor- | Actual, | Adjust ed, | Cor- | 60 | Logir
lager | | temper- | ratio, | | | | | y _e | W _R -√0 _R | rected,
U _a √0 _{7,1} | nienev. | uter. | Ve | W _f | ٧r | y, r | 73,5 | 7,./8 | rested, | Pn, a | 7 _{11,0} /8 ₂ | Pn.o | Tb | thrust | | ratio, | r ₆ /r ₁ | | | | - G | 01.1 | n, | WaT7 | - | 6g-/6g | 5,1√6,1 | 16 | •" | ,,, , | 5, a
6, 1 | ",- | "" - | 0 _{7,1} | actual, | Adjusted, | Cor- | T7/T1 | | | | l | İ | 77,1 | | | | | ',,- | l | | | 1,1 | l | | / //* | W1/Fm.a | V _r | ¥c. | | | | | l | 1 | 1 | 1 | l ' | | 1 | | l | | | | l | | l | l | Fn, # 4 | 1 | 1 | | | _ | | | <u> </u> | <u> </u> | <u> </u> | L— - | | , | Telestes ! | | area, 2.5 | M so ft | | l | <u> </u> | ــــــــــــــــــــــــــــــــــــــ | 1 | 1 11.5 | 1 | | | - | E0. * | Fn e | 151.1 | 1.993 | 8.64 | 3630 | 3988 | 11750 | 4750 | 3537 | 3707 | 10326 | 2124 | 2224 | 4081 | 1.700 | 1.793 | 1.932 | 3.078 | 2,769 | | ż | 59.7
58.8 | 59.6
59.0 | 149.0 | 1.982 | 9,50 | 3590 | 5064 | 11450 | 4450 | 4657 | 4863 | 13310
6858 | 3265 | 3400 | 9312 | 1.106 | 1,141 | 1,209 | 3.896 | 2.704 | | 3 | 57.5 | 56.2
56.2 | 140.4 | 1.085 | 9,17 | 3400
3290 | 3548
3547 | 10534
10441 | 4480 | 2350 | 2425 | | | 968 | 2723 | 3,658 | 3.586 | 5,869 | 3,487 | 3.404 | | 5 | 56.8 | 59.1 | 147.4 | .878 | 4.50 | 3140 | 3366 | 9661 | 4216 | 2541 | 2431 | 6623 | 949 | 982 | 2665 | 3.308 | 3,345 | 3.406 | 3.490 | 2.513 | | 8 7 | 58.3
54.8 | 57.3
56.2 | 148.1
148.3 | 1.001 | 8.56
7.87 | 3040
2700 | 3265
2809 | 9686
8328 | 3932 | P247 | 8288 | 6381 | 908 | 938 | 2579 | 2.874 | 2.996 | 3.830 | 3,266 | 2.314 | | à | 57.0 | 56,8 | 143.6 | 1.009 | 7.12 | 2600
2350 | 3035
2545 | 8883
7520 | 4148
3697 | 4177
3872 | 4306
3812 | 11721 | 2905
2359 | 2092 | 7871
6709 | 1,006 | 1.059 | 1,129 | 3,184 | 2,447 | | 10 | 47.1 | 55,2
47,5 | 192.4 | .971 | 5,44 | 1688 | 1686 | 5067 | 2731 | 1793 | 1819 | 5065
4808 | 660 | 558
110 | 1865 | 2.512 | 2.5% | 2,726 | 2,625 | 1.810 | | 11 | 24.0 | 26.0 | 45,4 | .014 | 2,15 | 539 | 658 | 1482 | 831 | 1688 | 1748 | | 108 | | 306 | L.095 | 5.063 | 5,466 | 1.951 | 1.001 | | 12
18 | 38.2
38.6 | 34.95
36.45 | 150.8 | 0.941
,979 | 5.98 | 2450
2500 | 2617 | 15441
12564
11735 | 307#
3080 | 3152
3067 | 5333
5111 | 14680
14078 | 2260
2200 | 2412
2975 | 10098 | 1.075 | 1,177 | 1,255 | 4.308 | 2. 9 21
2.818 | | 18
14
16 | 38.7 | 35.57
35.63 | 147.0 | .972 | 5.87
5,90 | 9750
1800 | 2437
2186 | 11733
10542 | 2010 | 2848 | 2998
2679 | 154 63
12621 | 2006
1902 | 2134
1999 | 9588
8903 | 1,025 | 1.133 | 1.224 | 4.027
3,786 | 2,728 | | 16 | 34,1 | 34.21 | 142,0 | ,845 | 4.67 | 1650 | 1861 | 9030 | 24.58 | 5496 | 2648 | 11,526 | 1561 | 1758 | 7800 | ,962 | 1.071 | 1.15 | 5.394 | 2,430 | | 17
10 | \$3.8
\$3.5 | 35.0
35,0 | 148,3 | , 858
, 838 | 5,48 | 2100
2050 | 2182
2182 | 10889
10517 | 2653
2416 | 2705
2661 | 2007
2003 | 12682
12697 | 1891 | 1961
1965 | 8873
8668 | 1.111 | 1.113 | 1.206 | 3,576 | 2,621 | | 19 | 33.0 | 33.0 | 139.7 | 956 | 4,70 | 1676 | 1736
1096 | 8376 | 9337
1699 | 9314
1107 | 2399 | 10844 | 1552 | 1557
418 | 5965
1864 | 1.190
1.108
2.621 | 1,124
1,176
2,621 | 1,20b
2,840 | 3.739
2,690 | 2,998 | | 81
80 | 29.0
14.0 | 29.5
14.1 | 190,5
59,0 | .819 | 3.45
1.82 | 343 | 548 | 5993
1680 | 403 | 1020 | 1020 | 4625 | 963 | 683 | 310R | 6.022 | B.003 | 5,417 | 1,966 | 9068 | | 22 | 22.9 | 29,35 | 148.5 | 0.959 | 3.75 | 1550 | 1765 | 13443 | 1842 | 1901 | 2009 | 14187 | 1373 | 1449 | 10930 | 1.120 | 1,219 | 1.314 | 4.282 | 2.886 | | 23 | 25,2 | 22.00 | 148.4 | .957
,947 | 3.53
3.29 | 1400 | 1583
1593
1134 | 12160
10471 | 1789
1845 | 1760
1848 | 1846 | 15100
11861 | 1206 | 1288
1120 | 1167
1190 | 1.142 | 1,251 | 1,320 | 5,958
5,759 | P./17 | | ะถสหม | 20,3 | 20,80 | 150.5
148.1 | 987 | 2,88 | 1050 | 1134
1540 | 8887
11648 | 1508
1668 | 1450
1730 | 1457 | 10543 | 1210 | 961
1320 | 8878
9211 | 1.110 | 1.19L
1.166 | 1,222 | 3.379
3.75 0 | 2,540
2,65h | | 27 | | 21,8 | 141,7 | ,911 | 3,21 | 1870 | 1577 | 10377 | 1578 | 1636 | 1765 | 12562 | 1125 | 1215 | 8509 | | 1.154 | 1.220 | 8.148 | 2.664 | | 26 | 20.5 | 20,6 | 135.7 | 903 | 2,45 | 1079 | 1156 | 8776 | 1406 | 1447 | 1557
893 | 10935 | 981 | 1031 | 7262
21.09 | 1.125
1.123
2.223 | 1.192 | 1.209 | 8,272 | 2.329 | | 130 | 16.7 | 16.4
8.9 | 110,3
60,8 | 718 | 1.89 | 829
315 | 532
313 | 4957
2450 | 304 | 192 | 189 | 1396 | 283 | #1
 | 1 — | | 2.174 | 2,861 | 2,400 | .9687 | | 321 | 17,1 | 16,1 | 140.4 | .903 | 2,75 | 1120 | 1150 | 12636 | 1911 | 1207 | 1170 | 11557 | 1009 | 971 | 9504 | 1.148 | 1.184 | 1.388 | 4.161 | 2.620 | | 22.22 | 18.3 | 15.0
15.2 | 130.0 | .932 | 2.34 | 911
611 | 950
611 | 10548 | 1079 | 1065 | 1105
956 | 10858
9441 | 594
792 | 904
768 | 8881
7585 | 1,019 | 1,062 | 1.108 | 3,764
3,566 | 2,344 | | 34 | 15,8 | 18.4 | 140.9 | . 836 | 2.69 | 1017 | 973 | 10680 | 1120 | 1186 | 1150
1050 | 11169 | 838 | 833
837 | 9063
7998 | 1.084 | 1.012 | 1.178 | 3,717 | 2,489 | | 35
36 | 14,9 | 18,7 | 108.4 | 901
901 | P. 65 | 540 | 489 | 5150 | 84.0 | 665 | 641
174 | 1099 | 49R
101 | 475
98 | 4907
958 | 1,098 | 1.098
3.149 | 1.188 | 2.826 | 1.761 | | 37 | 5.7 | 5,8 | 49.9 | .719 | ,72 | 218 | 296 | 3848 | 171 | <u> </u> | _ · · | | | | | 3,110 | 2,149 | 3.009 | 7,007 | 1.106 | | <u> </u> | 1 : | Т | T-: | T | T | 1 | T | | | _ | 1850 | 11996
11996 | 1087 | 1122 | 8167 | 1,203 | 1.241 | 1.344 | 3.611 | 2 1.00 | | 38
36
40 | 21.0 | 21.6
22.6 | 148.8
148.5 | 0.909 | 3.20
3.23 | 1308
1258 | 1585
1580
1084
708 | 10863 | 1827 | 1599
1550 | 1854 | 11756 | 1023 | 1902 | 7754 | 1.230 | 1.274 | 1.376 | 3,540 | F,427 | | 40 | 21.5 | 21.4 | 144.4 | .951
.874 | 2.86 | 1012 | 1094
708 | 9022
6541 | 1871 | 1368 | 1428 | 10501
7319 | 862 | 900
568 | 6491 | 1.174 | 1.215 | 1,313 | 7,507 | 1,929 | | ìŝ | 15.2 | 15.3 | 102.5 | .A51 | 1,34 | 406 | 458 | 3127 | 849 | 504 | 820 | 4436 | 258 | 248 | 1789 | 1,702 | 1.762 | 1.906 | 2,138 | 1.595 | | 43 | 20.4 | 21.5 | 142,9 | ,913 | 3.22 | 1950 | 1917 | P675 | 1838 | 1418
1951 | 1425 | 10458 | 93.8 | 921 | 6754 | 1,385 | 1,322 | 1.453 | 3,341 | 2.390 | | 45 | 19.9 | 19.3 | 135.6 | .963 | 2.76 | 1169 | 697 | 756P | 1300 | 1551 | 1265
956 | 9778 | 664
669 | 840
5 8 4 | 6496
4250 | 1.080 | 1,000 | 1.165 | 3,100 | 2.045 | | 44 | 17.1 | 18,9 | 116.5 | ,939 | 2.04 | 55 0 | 820 | 5055 | 961 | 986 | | 7189 | | 1 | | 1 | | l . | 1 | 1.000 | | 47 | 17.0
16.6 | 16.5
16.1 | 143.5
130.5
136.6 | ,948 | 2,45 | 1012 | 998 | 10764
10035 | 1078 | 1093
1046 | 1054 | 10671
9837 | 879
829 | 94.6 | 8341
7796 | 1.151 | 1.142 | 1.290 | 3.748 | 2,884 | | 49
50 | 16.0 | 15.9
15,2 | 135,5 | .907 | 2.21 | 825 | 615 | 8930
867 B | 991
815 | 989
748 | 959
760 | 9278
7527 | 753
546 | 745
554 | 7210
555 6 | 1.106 | 1.009 | 1.259 | 2,932 | 2,037 | | 61 | 12.0 | 12.4 | 106.9 | .663 | 1.25 | 405 | 413 | 4478 | 811 | 213 | 219 | 2106 | 48 | 49 | 475 | 8,456 | 8.375 | 9.438 | 4,480 | 1.1.84 | | | | | | | | | | | Kata ust | nozzle | Er42, 2.69 | th pa # | | _ | | | | | | | | 82 | 22,4 | 23.4 | 161.0
153,5 | 0.902 | 3,18 | 1238
1115 | 1450
1978 | 10707
9630 | 1621
1683 | 1501
1517 | 1747
1668 | 12154
11568 | 1050 | 1353
1058 | 8021
7410 | 1.179 | 1,240 | 1.356 | 3.511 | 2.440
2.33 | | 53
54
55 | 28.0 | 23,6
22,3 | 147,1 | .930 | 5,08
9,70 | 965
952 | 1001 | 7611 | 1398
1027 | 1351 | 1412 | 10022
5414 | 807 | 656
266 | 8077
1887 | 1.143
2.698 | 1,193 | 1.288 | 2.906 | 2.103 | | 156 | 11.1 | 20,0
11.5 | 181.0
77.0 | .950
.500 | 1,55 | 3775 | 715
357 | 5428
2777 | 1 211 | 537 | 356 | 2574 | 10 | 74 | 636 | 4.700 | 4.803 | 5.194 | 1.832 | .780 | | 87 | 17,1 | 16.5 | 143.0 | .976 | 2,44 | 136 | 196 | 10014 | 1080 | 1049 | 1,012 | 3713 | 6216 | 800 | 7197 | 1.105 | 1.107 | 1.252 | 3.526 | 1,261 | Figure 1. - Installation of YJ73-GE-3 turbojet engine in altitude chamber. Figure 2. - Schematic diagram of altitude test chamber with engine installed in test section. Figure 3. - Cross section of turbojet engine installation showing instrumentation stations. X-6 back (a) Fixed conical nozzle; area, 2.388 square feet. (b) Clamshell-type nozzle; area, 2.514 and 2.694 square feet (two positions). (c) Tail pipe only; area, 3.688 square feet. Figure 4. - Sketch of exhaust nozzles. (a) Reynolds number index, 0.88; altitude, 15,000 feet; flight Mach number, 0.803. Figure 5. - Engine performance maps. (b) Reynolds number index, 0.59; altitude, 25,000 feet; flight Mach number, 0.804. Figure 5. - Continued. Engine performance maps. (c) Reynolds number index, 0.58; altitude, 35,000 feet; flight Mach number, 1.23. Figure 5. - Continued. Engine performance maps. (d) Reynolds number index, 0.39; altitude, 35,000 feet, flight Mach number, 0.805. Figure 5. - Continued. Engine performance maps. (e) Reynolds number index, 0.24; altitude, 45,000 feet; flight Mach number, 0.805. Figure 5. - Continued. Engine performance maps. (f) Reynolds number index, 0.15; altitude, 55,000 feet; flight Mach number, 0.79. Figure 5. - Continued. Engine performance maps. (g) Reynolds number index, 0.12; altitude, 55,000 feet; flight Mach number, 0.43. Figure 5. - Concluded. Engine performance maps. Figure 6. - Variation of exhaust-nozzle area with percent of maximum thrust for minimum specific fuel consumption. Engine 7. - Engine pumping characteristics. Reynolds number index, 0.39; altitude, 35,000 feet; flight Mach number, 0.805. Figure 8. -
Engine air-flow and pressure-ratio corrections for range of Reynolds number index. Figure 9. - Engine pumping characteristics with exhaust-nozzle area of 2.388 square feet. Figure 10. - Exhaust-nozzle discharge coefficient. Figure 11. - Variation of combustion efficiency with combustion parameter. Figure 12. - Variation of teil-pipe total-pressure loss ratio with turbine-outlet gas-flow parameter. Figure 13. - Variation of effective velocity coefficient with exhaust-nozzle pressure ratio. Figure 14. - Jet thrust correlation for all exhaust-nozzle areas. Four nozzle areas at each altitude: 2.388, 2.514, 2.694, and 3.688 square feet. Figure 15. - Jet thrust correlation for an exhaust-nozzle area of 2.3ds square reet. Figure 16. - Effects of inlet temperature. Altitude, 35,000 feet; flight Mach number, 0.8; exhaust-nozzle area, 2.37 square feet. (b) Corrected net thrust. Figure 16. - Continued. Effects of inlet temperature. Altitude, 35,000 feet; flight Mach number, 0.8; exhaust-nozzle area, 2.37 square feet Figure 16. - Continued. Effects of inlet temperature. Altitude, 35,000 feet; flight Mach number, 0.8; exhaust-nozzle area, 2.37 square feet. (d) Variation of engine temperature ratio with engine pressure ratio. Figure 16. - Concluded. Effects of inlet temperature. Altitude, 35,000 feet; flight Mach number, 0.8; exhaust-nozzle area, 2.37 square feet. Figure 17. - Predicted performance from pumping characteristics. Exhaust-nozzle area, 2.388 square feet. Standard NACA atmosphere and complete ram recovery assumed. Figure 17. - Continued. Predicted performance from pumping characteristics. Exhaust-nozzle area, 2.388 square feet. Standard NACA atmosphere and complete ram recovery assumed. Figure 17. - Continued. Predicted performance from pumping characteristics. Exhaust-nozzle area, 2.388 square feet. Standard NACA atmosphere and complete ram recovery assumed. Figure 17. - Continued. Predicted performance from pumping characteristics. Exhaust-nozzle area, 2.388 square feet. Standard NACA atmosphere and complete ram recovery assumed. Figure 17. - Continued. Predicted performance from pumping characteristics. Exhaust-nozzle area, 2.388 square feet. Standard NACA atmosphere and complete ram recovery assumed. Figure 17. - Continued. Predicted performance from pumping characteristics. Exhaust-nozzle area, 2.388 square feet. Standard NACA atmosphere and complete ram recovery assumed. Figure 17. - Continued. Predicted performance from pumping characteristics. Exhaust-nozzle area, 2.388 square feet. Standard NACA atmosphere and complete ram recovery assumed. Figure 17. - Continued. Predicted performance from pumping characteristics. Exhaust-nozzle area, 2.388 square feet. Standard NACA atmosphere and complete ram recovery assumed. Figure 17. - Concluded. Predicted performance from pumping characteristics. Exhaust-nozzle area, 2.388 square feet. Standard NACA atmosphere and complete ram recovery assumed. Figure 18. - Effect of fuel flow on altitude-ignition characteristics. Fuel temperature, approximately 60° F; engine-inlet air temperature, 5° to -50° F.